MSc in
Energy, Architecture and Sustainability
RADIANCE Course

Axel Jacobs (a.jacobs@unl.ac.uk),
John Solomon (j.solomon@unl.ac.uk)*

26th August 2002

*LEARN, Low Energy Architecture Research uNit, University of North London, http://www.unl.ac.uk/LEARN

Contents

1

Introduction

1.1 What is RADIANCE? e

1.2 Raytracing vs. Radiosity

RADIANCE and UNIX

2.1 Doitthe UNIX Way e e

2.2 Introduction to UNIX e e
2.2.1 Shells and Processes e e e e e
222 manpages.
2.2.3 Switches, Pipes, STDIN and STDOUT o v ot v v o
2.2.4 File Structure and Paths o L L.

Describing a Scene in RADIANCE

3.1 General Information and Syntax oo
3.2 Describing the Geometry L
3.2.1 Approaches to Modelling o oL
3.2.2 Modelling Geometry L e e e
3.2.3 More Complex Scenes
3.3 Describing the Materials Lo
3.3.1 Standard Materials Lo
3.3.2 Materials Modified by Patterns and Textures
3.3.3 Light Sources L
334 Daylight
How RADIANCE Works
4.1 Ambient Calculations e
4.2 Secondary Light Sources
Analysing Scenes
5.1 Analysing RADIANCE pictures o i it i it
5.1.1 Creating False Colour Images
5.1.2 Analysis Through ximage
5.2 Analysing Models with rtrace
5.2.1 Getting an Illuminance Reading
5.2.2 Plotting Illuminance Values
The Joy of Rendering
6.1 Too Much to Remember Lo
6.2 The rad command
6.3 Getting Lazy e e e

W W

o O O Ut ot ot

1 Introduction

1.1 What is RADIANCE?

RADIANCE is a highly sophisticated lighting visualisation system. Originally started off as a
research project at the Lawrence Berkeley Laboratories, it has evolved into an extremely powerful
package that is capable of producing physically correct results and images that are indistinguish-
able from real photographs.

Geometry Materials

oconv

Octree

rtrace rview rpict

!

Number <H ximage

Tts versatility make RADIANCE the ideal choice not only for ’serious’ researchers but also for
architects, lighting designers and other professionals. Although a challenge to learn, RADIANCE,
especially in a UNIX environment, is capable of producing results that no other visualisation
package can achieve.[7]

1.2 Raytracing vs. Radiosity

RADIANCE is employs backward ray-tracing algorithms. This means that the light ’rays’ are
traced back from the point of measurement or view to the light source. There are a number of
other ray-tracers on the market because the basic principle is relatively simple to implement on
computers. However, where RADIANCE stands out is its ability to handle diffuse interreflections
between objects. Very efficient algorithms together with caching are applied for this. Other
packages usually try to equate for indirect contributions by defining the ’ambient’ light that has
no real light source and is instead everywhere. Examples for other ray-tracers include POV or
3DStudio.

Because the calculations are started from the view point, an entirely new calculation has to be
done for each individual view. Walk-throughs and videos are therefore extremely resource-hungry
requiring fast computers and a lot of time.

There is another conceptually different approach to compute light distributions. This method
is called radiosity. Radiosity-based algorithms start off with the energy that is radiated from the
light source. Assuming diffuse reflectance properties of the objects, the incoming energy is then
modified by the material’s reflective properties and bounced back into the room. This is done
until the contribution of the reflected light towards the average illuminance in the scene becomes
insignificant.

The energy distribution of the entire scene is calculated and stored. This means that once
all the calculations are done, new view points can be created in no time at all. This makes the
radiosity solutions ideal for the creation of virtual worlds such as VRML. Scenes created this way
can usually be told because of their lack of reflective and transparent surfaces, although newer

software implements get-arounds to these problems. A typical example of a simulation package
that uses radiosity is Lightscape, now owned by Autodesk.

2 RADIANCE and UNIX

2.1 Do it the UNIX Way

The RADIANCE source code is freely available for download from the Internet. RADIANCE was
developed to run on UNIX machines. Part of the reason is that in the early 1990s when Greg
Ward started writing RADIANCE, computers were very slow compared to today’s machines. It did
not make sense to run processing intensive applications such as raytracers on desktop PCs. Most
’serious’ workstations, however, operated under UNIX which provides a multitasking environment.

It is the UNIX philosopy to have very modular software. This is in stark contrast to the concept
that MS Windows and the Mac OS follow. They aim to provide GUI based software packages
that do everything the avearge user could possibly ask for and a lot more. The drawback here is
that the software can only do what its designers had in mind when they wrote it.

RADIANCE in contrast consists of more than 100 individual programs. This makes it ex-
tremely flexible. By defining options and combining two or more programs a maximum flexibility
can be achieved. Unfortunately, it also means that a steep learning curve is the price that has to
be paid.[2]

2.2 Introduction to UNIX
2.2.1 Shells and Processes

We are going to use RADIANCE the hard way in our course. We are going to completely abandon
the world of windows with all the nice buttons and GUIs that would only allow us to do what
somebody decided we should be doing.

In order to type in a command, we need a text interface to the OS known as shell. This is
something old-time users of DOS will be familiar with, although there it is called a DOS prompt.

A shell is basically a command interpreter. When we type a command, it executes it for us
and returns the result. Shells also provide a convenient environment that allows us to work more
efficiently. For instance, the BASH shell, which is what we are using, allows us to browse through
the command history and re-run a command by simply hitting the up-arrow. Shells can also be
programmed. This is called shell scripting.

On a mulituser, multitask platform, many processes run at the same time. The ps command
shows us the processes that we are running.

[student]$ ps
PID TTY TIME CMD
710 pts/0 00:00:00 bash
779 pts/0 00:00:09 gedit
787 pts/0 00:00:00 ps

However, this is only the so-called foreground processes. Buy appending an apostroph (’&’) to
the command, we can also run programs in the background. This is what we do when the process
takes a long time to complete. No longer can we easily control such processes (for instance, we
can’t hit ~C to terminate it), but it doesn’t block our command line either.

[student]$ ps x

PID TTY STAT TIME COMMAND

667 ttyl S 0:00 -bash

689 ttyl S 0:00 sh /usr/X11R6/bin/startx

696 ttyl S 0:00 xinit /home/axel/.xinitrc -- :0

701 ttyl S 0:01 icewm

703 7 S 0:01 /usr/bin/gnome-terminal --use-factory
705 7 S 0:00 esd -terminate -nobeeps -as 2 -spawnpid 703
707 7 SW 0:00 [gnome-name-serv]

709 7 S 0:00 gnome-pty-helper

710 pts/0 S 0:00 bash

779 pts/0 S 0:09 gedit

788 pts/0 R 0:00 ps x

The x switch of the ps command shows all processes that are owned by us, including background
ones. Note that ps under Linux is one of the few programs that don’t use hyphens (’-’) with its
options. Every process on a UNIX system has a unique process id. To terminate the process, type
kill, followed by the pid:

[student]$ kill <pid>

2.2.2 man pages

Most programs on our system can be called with a whole bunch of different options. This is also
true for the RADIANCE commands. Because no-one can remember all the programs with their
options, all programs come with the so-called man pages. Man pages are stored on the system
and can be used through the man command.

[student]$ man kill
KILL(1) Linux Programmer’s Manual KILL(1)

NAME
kill - terminate a process

SYNOPSIS
kill [-s signal | -p] [-a] pid ...
kill -1 [signal]

DESCRIPTION
kill sends the specified signal to the specified process.
If no signal is specified, the TERM signal is sent. The
TERM signal will kill processes which do not catch this
signal. For other processes, if may be necessary to use
the KILL (9) signal, since this signal cannot be caught.

OPTIONS

pid ...
Specify the list of processes that kill should sigp
nal. Each pid can be one of four things...

You should always bring up the man page if you are unclear about what exactly the command
does and to learn about options and syntax.[1]

2.2.3 Switches, Pipes, STDIN and STDOUT

The 1s command gives a directory listing. It is very similar to the DOS dir command.

[student]$ 1s
box.rad chair.rad msc.mat msc.oct msc.rif nice.vf

To find out more about the files in the current directory, the -1 switch to Is will give additional
information, such as the permissions, ownership, file size and the date and time of its last modifi-
cation.

[student]$ 1s -1

-TW-Y--T-- 1 student student 1624 Oct 24 1999 box.rad
-rW-r--r-- 1 student student 566 Oct 24 1999 chair.rad
-YW-Y--T-- 1 student student 321 Nov 3 1999 msc.mat
-TW-YW-T-- 1 student student 13091 Nov 3 1999 msc.oct
-YW-Y--Y-- 1 student student 543 Oct 24 1999 msc.rif
-TW-Y--T-- 1 student student 82 Oct 24 1999 nice.vf

Command line options are almost always preceded by a hyphen. Most commands operate on a
file or as in this case a directory. This is given as an argument on the command line. Sometimes
this can be an input that is required or optional.

The directory /usr/local/bin is where the RADIANCE executables are stored on our system,
amongst many others. To list them all, type:

[student]$ 1ls -1 /usr/local/bin

There are quite a lot of programs in this directory, far too many to display on the screen. To
display them one screen a time pipe the output of the ls command into more. Piping means that
the output of the first command becomes the input for the second one. The vertical bar () is
called the pipe symbol. Unless they are redirected, STDIN (the standard input) is taken from the
keyboard, whereas STDOUT (the standard output) is output onto the screen.

More takes whatever is passed to its STDIN and pages through it.

To bring up the next page hit the space bar, to scroll down one line hit the ENTER key.

[student]$ 1s -1 /usr/bin | more

-TWXI-XT-X 1 root root 207405 Jan 31 2000 rpict
-TWXr-Xr-X 1 root root 36190 Jan 31 2000 rpiece
-TWXT-XTr-X 1 root root 202125 Jan 31 2000 rtrace
-TWXY-XT-X 1 root root 229305 Jan 31 2000 rview
-TWXT-XT-X 1 root root 17347 Jan 31 2000 t4014
-TWXY-XT-X 1 root root 8927 Jan 31 2000 tabfunc
-YWXY-XY-X 1 root root 7444 Jan 31 2000 thf2rad
-TWXY-XT-X 1 root root 13463 Jan 31 2000 tmesh2rad
-YWXY-XY-X 1 root root 7122 Jan 31 2000 total
-TWXY-XT-X 1 root root 4677 Jan 31 2000 trad
-TWXr-Xr-X 1 root root 15089 Jan 31 2000 ttyimage

So we can now look at all the files. How many of them is there, we wonder? A handy little
program, we (as in *'word count’) will tell us. It displays the number of lines, words, and characters
of a given input. The -1 switch to wec makes it produce only the number of lines.

[student]$ 1ls -1 /usr/local/bin | wc -1
116

To preserve the directory listing, we can redirect the output of 1s from the STDOUT to a file. We’ll
call it Is.tzt. If Is.txt doesn’t exist, it will be created for us. But be aware—if it does exists and
contains data, it will be overwritten and the data will be lost.

[student]$ 1ls -1 /usr/local/bin > ls.txt

To display the file one screenful at a time, more is used once more. This time, we take its input
from a file rather than from STDIN.

[student]$ more < ls.txt

Let’s look for all commands that have ’gen’ in their name. The grep command can do this for us
and display the result on the screen. To preserve it we might type:

[student]$ more < 1ls.txt | grep gen > gen.txt
[student]$ cat gen.txt

-TWXI-XIr-X 1 root root 7320 Jan 31 2000 genblinds
-TWXr-Xr-X 1 root root 6852 Jan 31 2000 genbox
-IWXY-XI-X 1 root root 7664 Jan 31 2000 genclock
-IWXr-Xr-x 1 root root 10984 Jan 31 2000 genprism
-TWXI-XT-X 1 root root 25322 Jan 31 2000 genrev
-IWXr-Xr-x 1 root root 12521 Jan 31 2000 gensky
-TWXr-XIr-X 1 root root 32910 Jan 31 2000 gensurf
-IWXI-Xr-Xx 1 root root 26181 Jan 31 2000 genworm

The echo command takes whatever it finds on its command line and displays it. Not very useful
unless we redirect the output and do something with it. How about appending it to our gen.tzt
file?

[student]$ echo "Hello World" >> gen.txt

The old listing of the search results in /usr/local/bin is still there, we added a new line with "Hello
World’ to it. To check whether this is correct, use cat to display it. Like more, it can display files
but it is more useful to join files together.

[student]$ cat gen.txt

-TWXr-XIr-X 1 root root 7320 Jan 31 2000 genblinds
-IWXr-Xr-x 1 root root 6852 Jan 31 2000 genbox
-IWXY-Xr-X 1 root root 7664 Jan 31 2000 genclock
-IWXr-xr-x 1 root root 10984 Jan 31 2000 genprism
-TWXIr-XI-X 1 root root 25322 Jan 31 2000 genrev
-IWXr-Xr-x 1 root root 12521 Jan 31 2000 gensky
-rWXr-Xr-x 1 root root 32910 Jan 31 2000 gensurf
-IWXIr-Xr-x 1 root root 26181 Jan 31 2000 genworm

Hello World

2.2.4 File Structure and Paths

UNIX systems, like most other operating systems, use a tree shaped file structure also known as
"directory tree’. The base is called root and is indicated by a forward slash (°/’). From here, all
other directories and subdirectories branch out. The one where the user data is stored is called
/home. Under this directory every user that has an account has their own home directory. If we
are logged on as student, our home directory is /home/student. Only here are we allowed to write
and modify and files. At the same time, our files can not be seen or altered by other users.

To find out where you are, type pwd (present working directory). To change into another
directory, use the cd command, followed by the path. Paths can be absolute or relative. Typing

[student]$ cd /home

will bring you to /home, no matter where you are now. Now type

[student]$ cd student

This will bring you back to your home directory. You should realise that the last command only
works if you are in /home. Typing if from / or from anywhere else will tell you there is no directory
called student.

There is also a quicker way to go home. The tilda (°7’) is a short cut to the user’s home
directory. So typing

[student]$ cd ~

works just as well, from anywhere in the filestructure. There are another two special files in every
directory. One of them is the parent directory, the level above. This is expressed with two dots.
So to go up one level, run cd with two dots:

[student]$ cd ..

The other important file is just called ’.” and refers to the present working directory. Both, ’.
and ’..” are not listed by 1s unless it is called with the -a switch. To display the present working
directory, type pwd.

[student]$ pwd
/home/student/msc

3 Describing a Scene in RADIANCE

3.1 General Information and Syntax

RADIANCE uses a cartesian (rectiliear) co-ordinate system. All information is stored in ASCII
text format, so it can be edited with any text editor. Please refer to appendix A.1 for some
commonly used file name extensions.

There are 4 basic types of primitives:

1. Surface primitives
2. Materials
3. Textures
4. Patterns
The syntax for any primitive follows this scheme:

modifier type identifier

nS1S2...Sn
0
m R1 R2 ... R3

The type has to be one of the predefined surface, material, pattern or texture types that are known
to RADIANCE. The identifier can be freely chosen but should be unique within your project.

Before a surface primitive can be used, a material primitive must exists whose identifier is the
same as the modifier of the surface primitive. By chaining several material and texture/pattern
descriptions together, very detailed and realistic materials can be defined.

+ + + =

texture pattern material geometry object

The first primitive in this chain has no modifier, so ’void’ is used instead. The identifier of the
first primitive becomes the modfier of the second one and so on, e.g.

void brightfunc dusty > dusty texfunc woody > woody plastic chairmat > chairmat cylinder legl

The second line in every primitive contains all string arguments that are needed to describe the
primitive. The very first character (’n’) is an indicator for the number of string arguments to
follow.

The third line must always read 0. It was intended to use this line for integer arguments when
new primitives are introduced into RADIANCE but until now no primitive uses integer arguments.

The last line holds real arguments or floating point numbers. Again, the integer in front ('m’)
indicates the total number of arguments to follow.

Comments are preceeded by a hash sign ('#’) and proceed to the end of the line. If the first
character in a line is an exclamation mark (’!’), then this is taken as a shell command. The line
is executed and the result of this command returned.

3.2 Describing the Geometry
3.2.1 Approaches to Modelling
There are three different approaches to modelling in RADIANCE:

1. The import of CAD models

Through the DXF format

DesignWorkshop exports native RADIANCE format in its professional version
The TORAD interface in AutoCAD 12

Translators for ArchiCAD etc.

2. The use of proprietary software that uses RADIANCE as its rendering engine

AutoCAD 14 with SiVIEW

AutoCAD 14 or 2000 with DesktopRADIANCE
Adeline, the DOS version of RADIANCE

IES <Virtual Environment >

Candle, University College London
3. The construction of the scene with RADIANCE tools

e Manual input of the co-ordinates, using 10 internal object primitives

e Powerful generators

[student]$ 1ls /usr/local/bin |grep ~gen
genblinds

genbox

genclock

genprism

genrev

gensky

gensurf

genworm

If you decide to use a CAD package such as AutoCAD, you should be aware that you can describe
objects such as boxes in three different ways:

e By describing the 12 edges of the box. This is called a wire frame model.
e By modelling the 6 surfaces if the box. This is a surface model.

e By defining the volume of the box. For this, AutoCAD offers extensions such as ACE.

Only the second category models are suitable for use in RADIANCE. If you find a clever trans-
lator that can convert volumes into surface, volume models could potentially be used. This is
technically possible because the information is there. Wire frame model, however, do not contain
any information about the faces and are therefore useless to us.

10

3.2.2 Modelling Geometry

A RADIANCE scene should always be aligned so that the x-axis points North, the y-axis points
East, and the z-axis points upwards to the zenith. This is in contrast to some 3D modelling
packages which use x and y for the horizontal and vertical dimensions and describe the depth. i.e.
the distance behind or in front of the computer screen with the z co-ordinate.

Zenith

North
y
West X o

East

South

Sizes and distances can be given in any unit of length, as long as they are used consistantly.

When flicking through the RADIANCE user manual, you will find that many surface primitives
come in two flavors. An example is sphere and bubble. Both describe a ball shaped object. The
difference between the two is that a sphere has a surface normal that point outwards, whereas the
normal of a bubble points inwards. As long as the -bv+ switch to rpict is set to turn on back face
visibility, this doesn’t really matter for most materials. It does matter, however, for light sources
and mirrors.

The surface normal follows the right-hand rule. Form a loose fist but have your thumb stick
up. Hold your hand in such a way that the axis that is defined by your thumb is perpendicular
to the plane of the polygon. Now turn your hand around the thumb-axis following the direction
given by the other four fingers. If the indices follow the same direction, the surface normal of the
polygon is pointing into the direction of your thumb. Otherwise, it’s the opposite.

To get a rough idea about the dimensions and position of an object, use the getbbox command.
It returns the minimum and maximum of an enclosing box along the x,y, and z axis.

[student]$ getbbox chair.rad
xmin Xmax ymin ymax zmin zZmax
0 0.5 0 0.5 0 1

Now create a new file using touch and call it things.rad.

[student]$ touch things.rad

Use your favorite text editor to create the description of a sphere in this new file. The general
syntax is:

modifier sphere identifier

0

0

4 xcent ycent zcent radius

Look at you first RADIANCE object with the objline command. It creates what is known as a
meta file which can not be view directly. To display it on the screen, simply pipe it into x11imeta.

[student]$ objline things.rad | xlimeta

Click anywhere on the picture to quit. Also, see what getbbox returns when called with things.rad
now.

Next, use the genbox command to create a box. Append it to things.rad. The syntax for genbox
is:

11

genbox material name xsize ysize zsize

Open things.rad in a text editor and remove two or three adjacent faces. Look at the result with
objline.

Create another box of different dimensions. This time, don’t call it from the command line.
Instead, put an extra line in things.rad that calls the generator. Remember to begin the line with
? ‘7

We have just explored two different ways of calling generators:

The first one creates quite large and cumbersome files but allows us to make modifications to
individual parts of the object. Unfortunately, this is what most converters from CAD packages will
produce. A perfect cylinder, for instance, which is very simple to model using a native RADIANCE
primitive, will be split up into a number of polygons.The result will not look not very nice, unless
a very large number of polygons is created. However, this will result in large file sizes.

The second way is nice because it is only one line of text that we can easily understand.
To change the size of the box only requires the alteration of one argument, compared to 12 co-
ordinates done the other way. The drawback of this method is that only the whole object can be
modified, not just parts of it.

For what we’ve done so far, no material definitions were required. This is going to change.

3.2.3 More Complex Scenes

The next exercise will produce something a bit more useful. We are going to build a simple room
with a window opening in it. The room will then be used in combination with daylighting.

1. Create a room that is 4.0m wide (x-dimension), 5.0m deep and 3.0m high. Give it the
material wall_mat. Call the generator from the command line and direct the output of the
command into a file room.rad.

2. Change the material of the polygons that form the floor and the ceiling to floor _mat and ceil-
ing_mat respectively. The materials wall _mat, floor _mat, and ceiling_mat are already defined
in scene.mat. You’ll find the listings of most files used in our exercises in the appendix of
this document.

3. Lower the South facing wall so the height of the window sill is 1.0m.

(4,5,3)

(0,0,0)

4. Create a file called furniture.rad from which you call xform to place a table in the scene and
a couple of chairs around it. You'll find them in table.rad and chair.rad, respectively. Use
getbbox and objline to see whether you get the desired result.

12

5. Create a file bulb.rad which describes the geometry and the material for the light bulb. Place
the sphere at the origin of the co-ordinate system and give it a radius of 0.03m. For now, we
assume a white light source. Use the material light and give it equal values for the red, green,
and blue radiance. Please refer to section 3.3.3 for more information on coloured lamps.

6. In a file called lights.rad, place two of your bulbs at a height between 2.5 and 3.0m.

Before we catch a first glimps of the image, the scene needs to be compiled into an octree. The
purpose of an octree is to speed up the calculation by only considering the objects that lay within
the path of a ray. The command to use is oconv. It takes as arguments all material and scene
files that we want to include. oconv will not compile a scene file unless all materials that are used
are defined. To make things easier, the file scene.mat contains everything that is needed in this
exercise. The materials have to be given first, or oconv will drop out with an error. The octree is
produced at STDOUT, so you will need to redirect it into a file.

[student]$ oconv course.mat room.rad furniture.rad lights.rad > scene.oct

There are three commands that accept an octree as an input and trace rays within the scene.
They all start with 'r’: rview for in interactive preview, rpict for producing an image, and rtrace
to trace a single ray. Use rview for an interactive view of the scene pulling the parameters from
the view file nice.vf.

[student]$ rview -vf nice.vf scene.oct

13

Once the rview window is up, there are a number of interactive commands to adjust parameters
and view points. You will probably have to adjust the exposure of the image before you can see
all the details correctly. The most commonly used commands are listed below:

| Command | Explanation |
aim Zoom in.
exposure Set the exposure.
frame Set frame for refinement.
last Restore the previous view.
L Load parameters from file.
pivot angle | Pivot view about selected point.
quit Quit.
rotate angle | Rotate the camera.
set Change program variable.
trace Trace a ray.
view Change view parameters.
' Append current view to file.
write Write picture file.

Please look up the exact syntax and more detailed explanation in the rview man page.

3.3 Describing the Materials
3.3.1 Standard Materials

A total number of 25 different materials are available to describe the characteristics of the surfaces.
They range from the simple to use plastic or metal to the more complex ones like dielectric and
BRTDfunc which allows for the most accurate (and difficult) use, but has settings for all directional
aspects of reflectance and transmittance. Please refer to [?] for a complete list as well as detailed
descriptions.

The material used for the majority of cases is plastic which defines a surface that does not alter
the colour of the highlights, i.e. highlights appear in the colour of the light source rather than

14

the colour of the material. This is true for most materials around us, be it wood, paper, concrete,
plastic or fabric.
This is all the arguments the plastic primitive expects:

modifier plastic identifier
0

0
5 redrefl greenrefl bluerefl spec rough

All values must be within the range of [0...1] while most materials in reality have a roughness and
specularity below 0.2. The contribution of the individual RGB components towards the average
reflectance is weighted and equates to:

p = 0.265R + 0.670G + 0.065B (1)

Don’t get confused when reading through old documentation. You might find differing values
there. As of version 2.5 RADIANCE uses the multipliers found in equation 1.

Use your favorite image manipulation package to pick a nice colour and apply it to the seat
and back of our office chair. The range of colours in most graphics packages is between 0 and
255. So you’ll need to scale this down to a range between 0 and 1. What is the reflectance of the
fabric?

3.3.2 Materials Modified by Patterns and Textures

While defining the materials for plain colours is a straightforward process, the scene will look more
interesting in real when we apply patterns and textures to the object. Patterns describe changes
in colour while textures refer to perturbations of the surface normal. A picture mapped onto a
frame hanging on the wall is an example for a pattern. Ripples on a body of water, on the other
hand, can be created through textures.

We can string as many patterns and textures after one another as we like, the sky is the limit.
How about a dusty wooden table with stains and a chess board laid in and some scribble on it?
A combination of brightfunc, colorpic and texfunc will do the trick.

Course.mat has already defined two brightfunc and one colorfunc primitive for you. Create a
nice blue stripe across the walls by applying blue band to wall _mat. Additionally, use floorpat to
put some random tiles on the floor and make them look dirty with dirt. Try to understand what
each function does.

3.3.3 Light Sources

The available materials for light sources in RADIANCE are: light, illum, glow and spotlight.

Light is the basic material for self-luminous surfaces. It is used for most light sources. Illum is
used for secondary light sources with broad distribution, i.e. windows. Illum sources are treated
like ordinary light sources except when looked at directly. They then act as if they were made of a
different material. Glow is for self-luminous surfaces that have a limited effect. Spotlight is used
for light sources with a directed output.

For physically correct results, it is important to determine the correct radiance values for the
red, green, and blue channel. The lampcolor program does this for us. We use the type incandescent
here. A list of available lamp types can be found in lamp.tab. On our system, this file resides
under /usr/local/lib/ray. A normal tungsten lamp has a luminous efficacy of around 15lm/W. We
assume a 100W lamp.

[student]$ lampcolor

Program to compute lamp radiance. Enter ’7’ for help.
Enter lamp type [WHITE]: incandescent

Enter length unit [meter]: meter

Enter lamp geometry [polygon]: sphere

Sphere radius [1]: .03

15

Enter total lamp lumens [0]: 1500
Lamp color (RGB) = 350.197270 190.536992 54.738765
~C

These values need to be given as real arguments to the material primitive defining the material of
the bulb. Use the material light.

Although it is possible to model light sources with light of different colours, this is only nec-
essary if the scene contains light sources of different types. If it is lit by only one kind of lamp a
thing called colour adaptation that is common to human vision will result. In such a case, even if
we deal with a coloured light source, white objects in the scene appear perfectly white to the eye.
Moreover, if an image that was modelled with, let’s say tungsten light, and it is looked at under
daylight, is will appear much more reddish than it would were we in the actual room.

Care should therefore be taken not to overdo the effects of coloured light sources.

3.3.4 Daylight

Descriptions of daylight are generated with the gensky command. It produces two objects of type
source, one for the sky hemisphere and one for the ground. Source objects are infinitely far away
from any observer.

To start with, let’s create a sunny sky for London at today’s date. You should redirect the
output into a file called sky.mat.

[student]$ gensky 12 09 14 -a 51 -0 0 -m O
gensky 12 09 14 -a 51 -0 0 -m 0

Local solar time: 14.14

Solar altitude and azimuth: 11.0 29.9

Ground ambient level: 8.7

void light solar

0

0

3 2.72e+06 2.72e+06 2.72e+06

solar source sun

0

0

4 -0.489041 -0.851114 0.190903 0.5

void brightfunc skyfunc

2 skybr skybright.cal

0

7 1 3.76e+00 3.72e+00 2.98e-01 -0.489041 -0.851114 0.190903

Gensky will only create the distribution of sky and ground as well as the material definition and
the actual object for the sun. Materials for sky and ground and the two hemispheres are left to
the user. When defining the material properties, care must be taken to use skyfunc as modifier
to the material for both, the sky and the ground. This is already done in the file sky.rad. The
photometric average of the radiances according to equation 2 must be equal to 1.0, otherwise the
light levels will not be correct.

1 =0.265R + 0.670G + 0.065B 2)

Now bring up the result in rview. Set up a nice fisheye view and save the parameters into

fish.vf.

[student]$ oconv sky.mat sky.rad > sky.oct
[student]$ rview sky.oct

The standard CIE overcast sky produces a horizontal illumiance that can be derived from the
irradiance at the zenith with the following formula:

16

9 Enori
Rzenith = ? 1’,1705;: (3)

Working with this formula, create a 10,0001x overcast sky. This is done with the -b option to
gensky. Don’t forget to make the sky cloudy with -c. Overwrite sky.mat with the new output
from gensky. Re-create the octree again and look at it interactively using the view file from the
last exercise.

Now look in the file sky.mat. Check the ground ambient level. It should read 17.7. Now take
this value and multiply it with 7 and 179, the luminous efficacy of daylight as used by RADIANCE.
Surprised?

The sky and ground must both be made of the material glow. However, glow in contrast to
light, spotlight and illum, does not get sampled in the first instance. It will only make indirect
contributions. It is therefore sometimes desirable to map the sky distribution onto a window or
turn the window into a secondary light source. See section 4.1 for more details.

17

4 How RADIANCE Works

4.1 Ambient Calculations

Compile a new octree and include the following files: course.mat sky.mat sky.rad and room.rad.
Give it the name scene.oct. Make sure there is no furniture in the room and that you have an
overcast sky in sky.mat.
We now view the octree scene.oct with rview:
[student]$ oconv course.mat sky.mat sky.rad room.rad > scene.oct

[student]$ rview -vf nice.vf scene.oct
rview: warning - no light sources found

You will notice that everything inside the room appears black. Using the trace command from
withing rview, check whether this is just a question of poor exposure or if the room is really black.
Check the default settings for -ab and -av for rview.

[student]$ rview -defaults |grep -e -a
-av 0.000000 0.000000 0.000000 # ambient value

-aw 0 # ambient value weight
-ab 0 # ambient bounces

-aa 0.200000 # ambient accuracy

-ar 8 # ambient resolution
-ad 32 # ambient divisions

-as 0 # ambient super-samples

Both parametres have 0 as default setting. Zero ambient bounces turns the ambient calculation
off. So only light sources of type light, spotlight or illum will be sampled. Since the sky is made of
glow, it does not take part in the direct calculations, resulting in the black interior.

To be able to view the scene, it is sufficient to set an ambient value that is greater than zero,
the default. In RADIANCE ambient light is light that is not emitted from a source but instead
is assumed to be constant over the whole scene. Remember that in reality, the intensity of the
illuminance decreases with the squared distance from the light source.

To determine the value of the ambient irrandiance the following formula can be applied. The
-av option enables us to supply different values for the red, green, and blue channel, however, the
three of them will usually be the same.

laarnb
4
1797 “)
Set -av to a value that is equivalent to 500lx and call rview again. The -w switch will turn off
the‘warning’no light sources found’.

Romp =

18

[student]$ rview -vf nice.vf -w -av .89 .89 .89 scene.oct

Different faces of the room can now be distinguished, but the image looks very artificial because
all objects are uniformly lit without any shadows.

This approach does have advantage, though. For every pixel in the image, only one ray needs
to be traced which makes this a ’quick and dirty’ solution.

Before you quit rview, create a plan view of the entire floor and save it as floor.vf. The
appropriate view type is 1’ for a parallel view.

In order to find out how the indirect calculation affects the quality of the rendering, set -av
back to zero and run rview with one ambient bounce. Additionally, set the number of ambient
divisions to one with the -ad 1 option.

[student]$ rview -vf floor.vf -av 0 0 0 -w -ab 1 -ad 1 scene.oct

This is now quite a strange looking result. The majority of the floor is still black, but there are a
number of circular splotches that have a bright centre and fade towards the periphery.

The -ab 1 option that we used here turns the ambient calculations on. However, only one
ambient sample ray is sent off for each position where ambient sampling occurs (-ad 1 option). So

19

the chances of this ray eventually going through the window and hitting the sky are rather small
and decrease even more with the distance from the window.

But we also see a cheat that RADIANCE does. In order to reduce its workload, ambient
sample rays are not sent out for every pixel. It is assumed that the ambient light does not change
a lot throughout the scene, which is usually correct. Every point for which the ambient light did
get sampled carries a ’sphere of influence’. As long as a new pixel lies within a radius R of the
sphere, a new ambient sampling is not carried out. Instead, the value of adjacent sampling points
are interpolated. The radius of the ’sphere of influence’ is:

maxSize - aa
Rypin = —"— (5)
ar

MaxSize is the maximum scene dimension as returned by getbbox, aa and ar refer the settings
for -aa and -ar which control the ambient accuracy and the ambient resolution, respectively.
Increase the ambient divisions to 64 and see what this results in.

In order to make the scene look less patchy, two approaches can be taken:
e Greatly increase the setting for -ad

e Get RADIANCE to sample our window as if it was a 'real’ light source.

[5] features a table that shows the minimum number of sample rays that are needed to certainly
hit a glow source that sustains a certain solid angle.
Here are examples taken from there:-

20

| Angular Resoution (degrees) | Required -ad | Required -ds |

1 33863247 0.02
5 54446 0.09
10 3455 0.17
20 230 0.35
30 50 0.54

It can clearly be seen that as the light source gets smaller, the number of ambient sample rays
that is required to hit the glow source explodes. For very small sources, this stochastic sampling
becomes too unreliable and computing intensive.

The following section explains the second way—the use of the mkillum command.

4.2 Secondary Light Sources

The mkillum command takes an object and creates a distribution for it. When the object is looked
at directly, it shows up with its real material properties. Since it also carries the characteristics
of a light source, test rays are sent out to it every time the illuminance of a point are calculated,
without the need to perform ambient calculations.

We are going to use a polygon in the window plane for this purpose. Illum objects don’t
necessarily have to be real objects that exists in our scene. Virtual planes work just as well, in
which case the ’void’ modifier should be applied. In our case, we might as well use a glass material
for the window.

Fit a window into the opening. Make sure that it covers the entire opening and that the surface
normal points into the room. Use the file window.rad which already contains the necessary mkillum
options. The material windowglass is already defined in course.mat. Check that the octree scene.oct
only contains the descriptions of the sky and the room.

To create the distribution for the window, run the following command:

[student]$ mkillum -ab 0 < window.rad scene.oct > iwindow.rad
A successful run will create two new files: jwindow.rad which is a modified version of window.rad,
modifying the material windowglass with the calculated distribution found in illum.dat.

Now compile a new octree that includes the old one and adds furniture and the new illum
window to it:

[student]$ oconv -i scene.oct furniture.rad iwindow.rad > iscene.oct

Look at the result again:
[student]$ rview -vf floor.vf -ab 0 -av 0 0 O iscene.oct
This time, the warning message 'no light sources found’ doesn’t come up any more. We find

that, although the ambient calculation is turned off, the result looks pretty nice. Something is
still wrong, though. All the light seems to be emitted from one point in the centre of the window.

21

A quick check in the default options for rview reveals that the -ds option is set to zero unless
otherwise specified. This variable controls the ’source substructuring’. If set to a value between
0 and 1, large light sources get split up, so there is more than one point that get sampled for
shadows.

While still in rview, use the :set command to give ds a value of .3. Instead of one shadow, there
are now many, resulting in ’penumbras’ (soft shadows). The smaller the value for -ds, the more
points on large light sources get sampled, resulting in more realistic shadows. But don’t overdo
it—the time it takes to render an image is directly proportional to the number of light sources.

Render a view of your coice with rpict. Set -ab to 1 and give -ad, -ds and -av a reasonably
value. Call the image scene.pic. With exactly the same options, also do an illuminance picture.
This requires the -i option. Give it the name scene i.pic. We will need both images in our next
exercise.

22

5 Analysing Scenes

5.1 Analysing RADIANCE pictures
5.1.1 Creating False Colour Images

The falsecolor command is a shell script that create impressively looking false colour images.
Brightness values are mapped to colours to make it easier for us the determine areas of equal
luminance or illuminance. It is possible to use values from one image, let’s say an illuminance
picture, and overlay them onto another one, such as the corresponding luminance picture.

The following command line will do just this:

[student]$ falsecolor -i scene_i.pic -p scene.pic > false.pic

Falsecolor also creates legend, explaining the used colours and their corresponding values.
The default label is nits, which is the same as cd/m?.

To make the result just a tiny bit more appealing, we can create it with contour lines instead
of a full false colour representation, increase the number of divisions and change the maximum
scale of it.

[student]$ falsecolor -i scene_i.pic -p scene.pic -cl -n 15 -s 3000 > false.pic

5.1.2 Analysis Through ximage

If only a handful of values are required from an image or if other value such as pixel position or
the ray direction are of interest, the ximage command can be of help. The L key will display the
luminance/illuminance value at that point on the screen. If ximage was started from a command
line, typing the T key or pressing the middle mouse buttion will print out one or more of the
following: Ray origin, ray direction, radiance value, luminance value or pixel position. This
output can be controlled with the -o option when calling ximage. It can then be processed in a
spread sheet or dealt with directly with, for instance, the rcalc command.

23

5.2 Analysing Models with rtrace

Rtrace traces rays given to it on stdin and prodeces the result on STDOUT. Like the two other
r*-commands (rview and rpict), it does this with an octree.
The rays need to be specified in the following format:

xorg yorig zorig xdir ydir zdir

Technically, its possible to create entire images with rtrace. Because it is usually only used for
a couple of rays, the rendering parametres default to far more accurate settings. Check rtrace
-defaults to find out more.

5.2.1 Getting an Illuminance Reading

In a first step, we will use rtrace to find out the horizontal illuminance that is created by our
overcast sky. Since we’re only passing the one ray, we do this from the command line rather than
through a file. The UNIX echo command will do the job—it sends its arguments to STDOUT. Make
sure the file sky.oct only contains the description and the material of the sky.

[student]$ echo 0 0 0 0 0 1’ | rtrace -I -ab 1 sky.oct

The value that is returned is 5.587436e+01, or 55.87 W/m?2. To get the illuminance, we simply
multiply this irradiance with the luminous efficacy of 179 Im/W. The result is 10,0001x. This is no
surprise to us, because the sky was created with the -b option to produce a horizontal illuminance
of 10,0001x.

If we were using a non-gray sky (a blue one for instance), we would first have to calulate the
photometric average of the red, green, and blue channel. This could be done this way:

[student]$ echo 0 0 0 0 0 1’ | rtrace -I -ab 1 -h -w sky.oct \
| rcalc -e *$1=179%(.265%$1+.670%$2+.065%$3)°

The -h option turns off the header information, and the -w makes sure we don’t get the warning
that there’s no light sources around. Both would confuse the rcalc command.

5.2.2 Plotting Illuminance Values

This exercise is based on the last one but uses the bgraph command to plot a graph of lux levels
in working plane hight against the distance from the window.

The cnt command that comes with the RADIANCE distribution can be used to conveniently
create a one or moredimensional array of integer values between zero and the number given as an
argument. We need to cover the distance between 0.5m and 4.5m in half-metre intervalls. That
makes it nine calls to rtrace.

[student]$ cnt 9
0

W N O WN -

Ok, this is nine numbers now from 0 to 8. rcalc will convert them for us into co-ordinates.
Variables are referred to using a dollar sign (’$’). Variables in front of the equal sign ('=’) are
input that is passed to rcalc, whereas variables behind the equal sign are the output that is
produced.

24

[student]$ cnt 9 | rcalc -e ’$1=$1/2+.5°

.5

.5

B P WWNDNNERE PO
ol

Fine. But what we actually need is vectors, three indices for the origin and three for the direction.
That’s easily done because everything other than the y-position is constant. If you have furniture

in your scene, change zorig so it is a bit above the table rather than in exactly the same plane.

[student]$ cnt

0.5

.5

NDNNNMNNMNNDNNDNDN
BB WWwWNDN e -

That’s it. These nine
as the radiance value

.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00
.000000e+00

NNNNMNMNDNDNDN

.85
.85
.85
.85
.85
.85
.85
.85

9
0
0
0
0
0
0
0
0
0.85

(e elNe e Ne Ne NeNeoNe]

.000000e-01
.000000e+00
.500000e+00
.000000e+00
.500000e+00
.000000e+00
.500000e+00
.000000e+00
.500000e+00

LN VR VU O I R]

I e e

o

1

(ool elNeoleNoNeNol
e e

.850000e+00
.850000e+00
.850000e+00
.850000e+00
.850000e+00
.850000e+00
.850000e+00
.850000e+00
.850000e+00

NP P NMNNE WO

To get the reading in lux rather than red, green,
help us out once more.

[student]$ c

nt 9 \

.037447e+00
.819175e+00
.349180e+00
.268448e+00
.201090e+00
.926298e+00
.838468e+00
.047739e+00
.537872e-01

and blue irradiance values, equation 2 has to

O NNNNNDFP SN

| rcalc -e 2$1=2;$2=$1/2+.5;$3=.85;$4=0;$5=0; $6=1

.386994e+00
.672872e+00
.650761e+00
.775512e+00
.693099e+00
.356882e+00
.249420e+00
.505469e+00
.222808e-01

| rcalc -e $1=2;$2=$1/2+.5;$3=.85;$4=0;$5=0;$6=1" \

| rtrace -I -ab 1 -ad 8 -h -w -oov scene.oct \
| rcalc -e ’$1=$2;$2=179%(.265%$4+.670*$5+.065*$6) > > lux.dat

[student]$ ¢
0.5 1271
1 804.
1.5 284.
2 477.
2.5 463.
3 405.
3.5 387.
4 431.
4.5 158.

Prepared for you is a file named luz.plt which gives some instructions to the bgraph command.

Modify it as you

at lux.dat
.4789
313407
135595
732247
546922
675942
179138
251321
74665

like.

[student]$ bgraph lux.plt | xlimeta

25

= NNNDWW~ O

lines are now piped into rtrace. We need to output the co-ordinates as well
, because that is needed to plot the graph.

.523456e+00
.391775e+00
.904725e+00
.202515e+00
.107422e+00
.719479e+00
.595485e+00
.890926e+00
.064170e+00

Working Plane llluminance
-ad 8

1400 L L L L

1200 \\
1000 | \
800 \
600 \

400 \\\ / R T~— \ -

200

IHHluminance (lux)
T

Y Position (meters)

The result will probably not show a perfectly smooth curve. That is due to the undersampling
that occurs with the -ad set to 8. The default which is 512 produces a much better result. Try
again and increase -ad so you get a nice curve without pushing it up too much.

Working Plane llluminance
-ad 64

1400 L L L L

1200

1000

800

600

400

IHHluminance (lux)
T

200

0 T T T T
[1 2 3
Y Position (meters)

Such and similar plots are a good approach to fine-tune the parameters for rpict in order to
get convincing images and, more importantly, realistic readings. Try, for instance, to plot the
working plane illuminance in the back of a room against the number of ambient bounces. You

will see that the graph changes dramatically for small numbers but than approaches a final value
asymptotically.[7]

26

6 The Joy of Rendering

6.1 Too Much to Remember

rpict -defaults displays a total number of 42 (What’s the question again?) options that allow
complete control over all aspects of the rendering process. While this allows exerienced RADI-
ANCE users to fine-tune the results, even they sometimes wish to just hit a button and get some
result quickly without having to fiddle all those options. This is certainly even more true for the
beginner. We already found out that sticking to the defaults hardly ever produces the desired
result.

6.2 The rad command

But don’t despair, help is there! It comes in form of the rad command. Once the control file is set
up, which doesn’t take more than a couple of minutes, a short command line will either bring up
an interactive view of the model with rview or create a high quality image calling rpict. But it
does even more than that: By setting only three variables for the overall quality, the importance
of indirect calculations and the level of detail in the scene, rad automatically takes care of most of
the rpict options that are vital for getting a good quality image. Copy template.rif to course.rif
and edit it. To call it with rview, you need to give it an output device. Type rview -devices to
get a list. Use x11 for now.

[student]$ rad -o x11 -v nice course.rif

rview -vu 0 0 1 -vf nice.vf -ps 6 -pt .08 -dp 512 -ar 20 -ms 0.1
-ds .3 -dt .1 -dc¢ .5 -dr 1 -sj .7 -st .1 -ab 1 -aa .25 -ad 196 -as 0 -av
0.01 0.01 0.01 -1r 6 -1w .002 -R nice.rif -o x11 nice.oct

To run rpict, simply drop the -o x11 option. If you also drop -v, one image for each view will be
rendered.

6.3 Getting Lazy

As if all this wasn’t enough, there is even a graphical user interface (GUI) with RADIANCE. It
is called trad. trad is an X11 (UNIX) front end for the rad command using the Tcl/Tk toolkit.
It doesn’t need any explanation. Just try it out. It comes with a help system that will happily
answer all your question.

[student]$ trad &

- TRAD -
Finished views Unfinished views
from.entrance | Iz . FILE
. SCEME
o sl | . ZONE
- VIEWS
Delete
.- OPTIONS
|- =
) | ¥ .~ ACTION
’ # RESULTS
Display | Command: Limage -& %ed %s »& /devinull &
HELP
Convert Targa 24-bit | Al [delphi_%stga

QuIT

Print | Command: |ra_ps %s | Ipr

27

References

[1] RADIANCE man pages.*

[2] Mike Gancarz: The UNIX Philosophy. Digital Press, 1977
[3] Radiance 3.1 Reference Manual*

[4] Radiance Tutorial*

[5] Raphael Compagnon’s *97 Daylighting Course on Radiance*

[6] Greg Ward Larson, Rob Shakespeares: Rendering With Radiance: The Art and Science of
Lighting Visualization, Morgan Kaufmann, 1998

[7] Greg Ward Larson, Rob Shakespeare, John Mardaljevic, Charles Ehrlich: Rendering with Ra-
diance: A Practical Tool for Global Illuminance, Siggraph 1998 Course #33, Orlando, Florida*

* On the RADIANCE web site

Websites

e European RADIANCE mirros site:
http://lesowww.epfl.ch/anglais/radiance/a_ radiance.html

e RADIANCE web site:
http://radsite.lbl.gov /radiance

e LEARN, University of North London
http://www.unl.ac.uk/LEARN

28

Appendix

A.2 Suggested File Name Extensions

Under UNIX, it is not necessary to stick to certain file extensions. However, it is highly recom-
mended to always use the same extensions. This will help to stay organised even in directories
that contain large numbers of files.

| File Type | Extension |

object description | .rad
material definition | .mat
octree .oct
view file of
project file .rif
image file .pic
rcalc file .cal
ambient file .amb
data table .dat
plot file .plt
bash shell script .sh

A.2 Files Used in the Course

| File Name | Use

chair.rad office chair

table.rad simple table

course.mat | material definitions

sky.rad definition of sky and ground

luz.plt plotfile for bgraph

nice.vf view definitions

template.rif | template for a RADIANCE input file

29

A.3 File Listings
A.3.1 chair.rad

This is a very simple chair.

Dimensions are in metres.

It is 0.5m heigh (back 1.0m) and 0.4 x 0.4m wide.
The corners are at (0,0) and (.5,.5).

void plastic chairmat
0
0
5
.2.2.1 00

void plastic fabric
0
0
5
.8 .4.2 00

!genbox fabric seat .5 .5 .05 |xform -t 0 0 .45
!genbox fabric back .05 .5 .3 |xform -t .05 0 .7

chairmat cylinder legl
0
0
7
.0256 .0256 0 .025 .025 .9 .025

chairmat cylinder leg2
0
0
7
.475 .025 0 .475 .025 .45 .025

chairmat cylinder leg3
0
0
7
.025 .475 0 .025 .475 .9 .025

chairmat cylinder leg4
0
0
7
.475 .475 0 .475 .475 .45 .025

A.3.2 table.rad

This is a very simple table.

Dimensions are in metres.

It is 0.85m heigh and 1x1m wide.

The corners are at (0,0) and (1,1).

void plastic tablemat
0
0
5
.6.3.1 00

!genbox tablemat tabletop 1 1 .05 [xform -t 0 0 .8

tablemat cylinder legl
0

30

.1.10 .1 .1 .8 .025

tablemat cylinder leg2
0
0
7
.9.10 .9 .1 .8 .025

tablemat cylinder leg3
0
0
7
.1.90 .1.9 .8 .025

tablemat cylinder leg4
0
0
7
.9 .90 .9 .9 .8 .025

A.3.3 course.mat

void brightfunc dusty
4 dirt dirt.cal -s .1
0

1.4

void brightfunc floorpat

2 .4*xrand(floor(Px/.25)-.25%floor(Py/.25)-.25)+.6
0

0

void colorfunc blue_band

4 if(Pz-1.2,1,if(Pz-1,0,1)) if(Pz-1.2,1,if(Pz-1,0,1)) 1
0

0

void plastic wall_mat
0
0
5
7T .7 .7 00

void plastic ceiling_mat
0
0
5
111 00

void plastic floor_mat
0
0
5
.6 .6.5 00

A.3.4 sky.rad

skyfunc glow skyglow
0
0
4
.85 1.04 1.2 0

skyglow source sky

31

o

001 180

skyfunc glow groundglow
0
0
4
.81.1.8 0

groundglow source ground
0
0
4
00-1 180

A.3.5 lux.plt

include=line.plt

title="Working Plane Illuminance"
subtitle="-ad 8"

xlabel="Y Position (meters)"
ylabel="Illuminance (lux)"
Adata=lux.dat

Acolor="2"

A.3.6 nice.vf

rview -vtv -vp 3 4 1.6 -vd -0.404488 -0.914494 0.00946962 -vu 0 0 1 -vh 90 -vv 90
-vo 0 -va 0 -vs 0 -v1 O

A.3.7 template.rif

DETAIL= Medium
INDIRECT= 1

OCTREE= somefile.oct
PENUMBRAS= False
PICTURE= pickie
QUALITY= Medium
REPORT= 2 course.err
RESOLUTION= 512

UP= Z

VARIABILITY= Low

ZONE= Interior 0 56 0 4 0 3
materials= somefile.mat
scene= somefile.rad

view= nice -vf nice.vf

32

