Adapting genBSDF for custom fenestration measurement

Sarith Subramaniam, Sabine Hoffmann Building Systems and Building Technology Department of Civil Engineering, RPTU

Bidirectional Scattering Distribution Functions

What Is a BSDF?

- "BSDF" stands for "Bidirectional Scattering Distribution Function" (BRDF + BTDF)
- ✤ Describes how light scatters off a surface
- 🔹 Incl. wavelength, a 5-dimensional scalar function
 - unitless ratio of outgoing radiance over incoming irradiance (1/steradian)

Greg Ward, Freibourg 2010 "Calculating and Applying BSDFs in Radiance"

David Geisler-Moroder, New York 2019 "BSDF Daylight System Characterization"

Some common approaches for generating BSDF

© pab.eu (L x B x H) > 6m x 4m x 2.7m

genBSDF [-c Nsamp] [-t{3|4} Nlog2][{+|-}C
][{+|-}a][{+|-}forward][{+|-}backward][
{+|-}mgf][{+|-}geom unit][-dim Xmin Xmax Ymin
Ymax Zmin Zmax] [geom ..]

The WIPANO "KLEMS" project | Oct. 2021 – Sep. 2023

The transmittance measurement setup developed by Fraunhofer CSP

(L x B x H) < 0.5m x 0.5m x 1m

© Fraunhofer CSP

Aperture ~ 0.1m x 0.1m

Goniometer

Radius < 0.3m

The prototypical setup is intended to measure transmittance across a 1/4 hemisphere

© Fraunhofer CSP

© Fraunhofer CSP

© Fraunhofer CSP

Φ: Azimuthal measurements through sample rotation

 θ : Vertical measurements through goniometer

Goal: Validate the measured transmittances with Radiance

"Empirical validation should in principle compare a 'true' model, based on measurements obtained from physical experiments, with simulated results from a mathematical model implemented in a program."

Jensen, Søren Østergaard. "Validation of building energy simulation programs: a methodology." Energy and buildings 22.2 (1995): 133-144).

technik

Adapting genBSDF – Attempt 1: Modifying the measurement basis

Measured positions © Fraunhofer CSP

Klems basis

print	RADSCN	'#@rfluxmtx	' . (\$	Stensortre	e ? "h=	-sc\$ns∖n"	: "h=-	kf\n");	genBSDF	
char		*kfullfn =	"klems_	full.cal";						
char		*khalffn =	"klems_	half.cal";		rflux	ntx.c			
char		<pre>*kquarterfn = "klems_quarter.cal";</pre>								
kpola(r) : select(r, 5, 15, 25, 35, 45, 55, 65, 75, 90);										
knaz(r) : <u>select(r, 1, 8, 16, 20, 24, 24, 24, 16, 12);</u>										
kaccum(r) : if(r5, knaz(r) + kaccum(r-1), 0);										
Nkbins : kaccum(knaz(0));										
kbin(Nx,Ny,Nz,Ux,Uy,Uz) = kbin2(Acos(-Dx*Nx-Dy*Ny										
calfn :	= kfullf	n; kfullfn =	NULL;							
binf =	"kbin";			rfluxmt	x.c					
nbins :	= "Nkbin	s";								

(The position of the dots are representative only)

Adapting genBSDF – Attempt 1: Extract a subset of the output of genBSDF

Schematic representation of genBSDF

Practical Considerations: An "imperfect" light source

The parallel light source has an angular divergence. Divergence follows a roughly Gaussian distribution. At any angle of incidence, the rays diverge by $\sim \pm 2^{\circ}$ to $\pm 4^{\circ}$

Practical Considerations: A detector with variable angular sensitivity (e.g. $\theta = 0^{\circ}, \Phi = 0^{\circ}$)

Implications: Example1 | No sample, Normal incidence, Measurement at $\theta = 0^{\circ}$, $\Phi = 0^{\circ}$

Transmittance = 100%

Transmittance < 100%

genBSDF

Implications: Example2 | No sample, Normal incidence, Measurement at $\theta = 2.5^{\circ}$, $\Phi = 0^{\circ}$

Transmittance = 0%

Transmittance > 0%

gebäude*

systeme technik

genBSDF

1.2 0.8 0.6 0.4 0.2 -2 2 6 void glow det01 0 0 4 0.99 0.99 0.99 det01 source src1 0 0 4 0 0 1 2 🔔 void glow det_N 0 0 4 0.15 0.15 0.15 det_N source srcN 0 0 4 0 0 1 16 gebäude* systeme

technik

Modeling the detector and angle filter and detector using *glow* and *source*

15

Modeling the light source as divergent rays from every origin point

X Y Z X_{vecNN} **Y**_{vecNN} **Z**_{vecNN}

Deriving transmittance from the simulation result

m = Total number of rays

gebäude systeme technik

Simulation with no sample and simple glass at normal incidence | Correction factor

trans_calcTransmission(deviceFile_theta=90-theta_phi=phi)
if not transCorrFact:
 transCorrFact=1/trans
transCorr=transCorrFact*trans

transCorrFact sets transmittance at normal incidence to 1.0 (100%)

Uses the same correction factor as derived for Air (No Sample)

Need to check if the same correction factor can be used for all values of (θ, Φ) .

Simulation with lamella blinds (black, opaque, diffusing) at 45° tilt

Simulation with lamella blinds (mirror, specular) at 70° tilt

Probable reasons for difference in simulated vs measured values for mirror lamella blinds

© Fraunhofer CSP

"The light reflected from the lamellas is recaptured peak at a theta of around 35°. (theory peak should be at 40°, but tilt angle of \pm 5° may vary due to lamella twisting)"

© Fraunhofer CSP

"Only 10% light is captured at 35° as peak, because the reflected light is not homogeneous:

- mirrors are not 100% reflective
- lamellas tilt angle may vary by ±5° (twisting)"

Improvements to the simulation model after one-to-one comparison with measurements.

Measurements and simulations with additional samples.

Comparison with genBSDF results.

Documentation of instrumentation and simulation in a standard (VDI-EE 2068)

Thank you.

Acknowledgements:

Charlotte Pfau, Marko Turek, Christian Hagendorf and others at Fraunhofer CSP David Geisler-Moroder, Greg Ward, Eleanor Lee, Lars Grobe Taoning Wang, Jacob Jonsson and others at the Berkeley Lab

