Roland Schregle

Fraunhofer Institute for Solar Energy Systems Freiburg, Germany

Motivation: Caustics

Fraunhofer _{Institut} Solare Energiesysteme

Motivation: Backward Raytracing

RADIANCE is a *backward* raytracer

- □ cannot simulate caustics adequately
- □ problems with specular daylight systems
- \Rightarrow supplement with *forward* raytracer!

Fraunhofer Institut Solare Energiesysteme

Photon Map (Wann Jensen, 1995)

- □ Forward raytracer
- □ Monte Carlo (light) particle transport simulation
- Two pass method
- Couples to RADIANCE's ambient calculation (backward pass)

Fraunhofer Institut Solare Energiesysteme

Photon Map: Forward Pass

- □ Photons emitted from light sources
- □ Scattered / absorbed at surfaces
- Indirect hits stored in space subdividing data structure (kd-tree)
- \Box Photon attributes: flux Φ , position \vec{x} , normal \vec{N}

Fraunhofer Institut Solare Energiesysteme

Photon Map: Forward Pass

Three photon types:

- \Box Global: (diffuse | specular) \rightarrow diffuse illumination
- $\hfill\square$ Caustic: specular \rightarrow diffuse illumination
- □ Volume: global inscattering in *mist*

Photon Map: Backward Pass

Fraunhofer _{Institut} Solare Energiesysteme

Photon Map: Density Estimation

□ Find *N* nearest photons to \vec{x} in kd-tree

□ Irradiance $E(\vec{x})$ proportional to (weighted) photon density

$$E\left(\vec{x}\right) \approx \sum_{i=1}^{N} K\left(\left\|\vec{x} - \vec{x}_{i}\right\|\right) \Phi_{i}, \qquad \int_{0}^{r} K\left(s\right) ds = 1$$

Epanechnikov kernel: $K_{e}\left(s\right) = \frac{2}{\pi r^{2}} \left(1 - \left(\frac{s}{r}\right)^{2}\right)$

Results: Compound Parabolic Concentrator

Results: Volume Caustics

Fraunhofer _{Institut} Solare Energiesysteme

Results: Y-Glass

Results: Lightpipe

Fraunhofer _{Institut} Solare Energiesysteme

Validation

How does photon map measure up to theory and RealLifeTM?

□ Analytical validation using simple geometry \Rightarrow accurate within ± 0.5%

Experimental validation using test box with illuminance sensors

 \Rightarrow in progress...

Conclusion

- Photon map enables RADIANCE to efficiently simulate caustics
 - \Rightarrow applicable to redirecting systems
 - \Rightarrow greater simulation scope
- \Box Faster than RADIANCE ClassicTM
- □ Already converged
 - \Rightarrow no ambient bounce / value syndrome
- □ Validation indicates adequate accuracy

