Parametric Study of Daylighting Strategies with Consideration of Glare Problems

Case Study: IGES Research Center in Zushi

Santiago L. Torres Sakamoto Laboratory

The University of Tokyo
Graduate School of Engineering
Department of Architecture

IGES Research Center Zushi, Kanagawa Prefecture

Daylight strategies

Research room: plan diagram

Sections in the main window and position of daylight sensors

Daylight strategies and factors studied

- Light shelf
- Louvers
- Ceiling shape
- Orientation

Parametrical procedure

- Set of simulations repeated for different instances of the building
- Simulations calculated the electricity consumption for each operating hour in a year
- Results are obtained from the comparison of the different simulations
- Each yearly simulation took aprox. 36-40 hs. (Pentium 3, 900MHz, 500Mb of RAM, under Windows)

Models of the building

Research room: plan diagram

Sequence in the simulation process (repeated for each hour)

#?RADIANCE

findglare -vp 2 5.8 1.5 -vd -1 0 0 -t 6000 -ga 10-70:10 -av .1 .1 .1 findglare.oct VIEW= -vth -vp 2 5.8 1.5 -vd -1 0 0 -vu 0 0 1 -vh 180 -vv 180 -vo 0 -va 0 -vs 0 -vl 0 FORMAT=ascii

BEGIN glare source

-0.999111 -0.013333 0.040000	0.146333	8758.838079
-0.751899 -0.658737 0.026714	0.052349	8017.280019
-0.784885 0.617347 0.053269	0.033143	6741.591044
-0.947418 0.000000 0.320000	0.117585	9812.825088
-0.662042 -0.649863 0.373333	0.013426	14175.594810
-0.848399 0.249883 0.466667	0.027712	13902.406172
-0.840480 -0.275346 0.466667	0.025820	14099.565250

END glare source

BEGIN indirect illuminance

70	2516.027533
60	2741.833632
50	2963.398747
40	3200.358899
30	3439.329770
20	3653.850107
10	3815.299138
0	3892.450187
-10	3878.283673
-20	3776.563295
-30	3617.793440
-40	3419.675381
-50	3204.818327
-60	2989.049532
-70	2764.193109

END indirect illuminance

■ Glare assessment

- Verification of glare sources
- Modification of blinds position
- Calculation of illuminance values
- Calculation of electricity consump

Diagram of the Control program

Radiance

Calculate illuminance levels

Radiance images

Base case

Daily consumption and glare incidence

Annual total energy consumption and glare variation with respect to base case

Known problems

- The use of only one observer to assess glare conditions
- The use of UGR, not specific for daylight
- Low quality renderings (computing time)
- Impossibility to determine the sky condition for low solar altitudes
- Differences between the modeled building and the real building
 - All blinds in each room open or close together
 - Daylight sensors are placed every three or four sets of lamps
 - The reflectance of the louvers is much lower
- Differences between simulated behavior of occupants and real occupants (unknown)

Conclusions

- The variation of the glare rates was always related to a variation of the energy consumption.
- The light shelf showed a protective effect without reducing the daylight levels inside the room.
- The horizontal ceiling redirected the light from the light shelf further into the rear part of the room.
- Changing the orientation of the main facade proved to be more effective than other measures.
- Some results were counterintuitive, indicating that glare rates should be considered in energy consumption assessments.
- Further research should include the comparison of this methodology with real operating conditions, especially regarding the behavior of real occupants.