
The built environment… 

•  In the future, the built 
environment will need to deal 
not only with “energy saving”, 
but also “very high-quality 
indoor environment” 
•  Healthy 
•  Productive 
•  Comfortable 
•  Energy-producing 
•  ….. 

•  Solutions are needed! 
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…Toward the future 
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The future is so 
uncertain and highly 

complex: 

The need to predict the 
performance of future 
solutions 
 using computational 

simulation tools 
 e.g. RADIANCE! 

Radiance-online.org (2012) 



Some familiar terms 
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…Toward the future 
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The future is so 
uncertain and highly 

complex: 

The need to predict the 
performance of future 
solutions 
 using computational 
simulation tools 

Low availability of 
natural (day-)light! 



The idea 
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Approach towards VNLS (model) 

Light directionality 

With view, 
diffuse 

Without view, 
diffuse 

Without view, 
directional 

With view, 
directional 



•  Typically diffuse light 
distribution 

•  Applied for situations 
where view is not 
considered the most 
important thing, e.g. 
when comparing 
energy consumption. 
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Model without view, diffuse  

Philips Lighting (2007) De Vries et al. (2009) 

Smolders & de Kort (2012)  



•  For example, real 
windows under CIE 
overcast sky: 
 gensky –c –b 22.9 

•  …compared to virtual 
windows:  
 light 11.856 
11.856  11.856 

•  Combined with 
general lighting ETAP 
luminaire 2x28 W 
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Model without view, diffuse – (2) 
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Model without view, diffuse – (3) 
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•  Typically (also) diffuse light 
distribution, but with image 
projected or displayed. 

•  Applied for situations where 
view is considered 
influential, e.g. when 
comparing glare perception 
from various view types. 
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Model with view, diffuse  

Philips Homelab (2006) 

Winscape (2011)  
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Model with view, diffuse – (2) 

•  For example, comparing 5 different 
images as viewing scene 

 
“Africa” 

“Creek” 

“First Floor” 

“Hairdresser” 

“Night Skyline” 

IJsselsteijn et al. (2008) 
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Model with view, diffuse – (3) 

•  2D image mapped on light material 
 

 

“Africa” 

“First Floor” 

“Hairdresser” 

“Night Skyline” 

IJsselsteijn et al. (2008) 0 

500 

1000 

1500 

2000 

2500 

3000 

3500 

4000 

4500 

5000 

Africa Creek FirstFloor Hairdresser NightSkyline 

Lu
m

in
an

ce
 (c

d/
m

2)
 

Scenes 

Source brightness without and with occlusion 

No occlusion 
Occlusion 

Maintain 
40 lx on 
the desk 

Ambience parameters: –ab 3 –aa 0.15 –ar 128 –ad 512 –as 256 



/ Unit Building Physics and Services PAGE 14 9/14/12 

Model with view, diffuse – (4) 
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•  Still in conceptual 
model. 

•  View is simplified: green 
“ground” and blue “sky”. 

•  Focused on directional   
light from the “ground” to 
the ceiling. 

•  Applied for optimising 
space availability and 
uniformity. 
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Model with simple view, directional  



•  Input variables: 
•  Interval of tilt angle (°): 1.0; 

1.5; 2.0 
•  Beam angle (°): 38; 76; 114 
•  Total luminous flux of the 

“sky” (lm): 6200, 11100, 19900 
•  Distance between windows 

(m): 0; 0.75 
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Model with simple view, directional – (2)  

Ambience parameters: –ab 4 –aa 0.15 
–ar 128 –ad 512 –as 256 –ds 0.2 
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Model with simple view, directional – (3) 

•  Output variables: 
•  Space availability:  

     %A =                        × 100%   ;  N =1944 

•  Uniformity: U0 =  
            

•  Average ground contribution on the ceiling:  
  

     %Gav =                         × 100%   ; N =10 

 

•  Average probability of discomfort glare: 
     PDGav = ¼ (DGP + DGIn + UGRn + CGIn) 

  where DGIn = 0.01452 × DGI;  UGRn = 0.01607 × UGR;  
  CGIn = 0.01607 × CGI; (Jakubiec & Reinhart, 2012) 

n(E ≥ 500 lx) 
        N 

Emin 
 Eav 

 1        Eground-i  
 N         Etotal-i 

   N 

 
 i = 1             
Σ  



•  Compared to a similar scene where VNLS 
is replaced with real windows under CIE 
overcast sky, with equal average surface 
luminance. 

•  The proposed criteria: 
•  Space availability: %A VNLS > %A RW 

•  Uniformity: U0 VNLS ≥ U0 RW 

•  Average ground contribution on the ceiling:          
0.9(%Gav RW) ≤ %Gav VNLS ≤ 1.1(%Gav RW) 

•  Average probability of discomfort glare:   

 PDGav VNLS ≤ PDGav RW    
•  Average surface luminance:                     

Lav ≤ 3200 cd/m2                   
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Model with simple view, directional – (4) 
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Model with simple view, directional – (5) 

•  Probability of discomfort glare at position A, B, C: 

 

•  Position C experiences the largest prob. of discomfort glare  
•  Standard dev. in VNLS scenes are comparable to those in 

RW scenes  PDGav can be used for comparing both VNLS 
and RW 

Type Conf. IA (°) BA (°) Φ (lm) Pos. DGP DGIn UGRn CGIn PDGav Stdev 

VNLS 1a 2.0 76 11100 
A 0.24 0.21 0.36 0.39 0.30 0.09 

B 0.21 0.20 0.32 0.35 0.27 0.08 

C 0.27 0.33 0.46 0.48 0.38 0.10 

RW 1a L = 3200 cd/m2 

A 0.24 0.21 0.35 0.39 0.30 0.08 

B 0.21 0.19 0.31 0.33 0.26 0.07 

C 0.26 0.31 0.43 0.45 0.36 0.09 

1a, VNLS 

1a, RW 
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Model with simple view, directional – (6) 

•  Results example of VNLS vs RW 
 Type Conf. IA (°) BA (°) Φ (lm) %A U0 %Gav PDGav 

VNLS 
1a 2.0 38 11100 28.0 0.37 48.8 0.35 
1a 1.5 38 11100 29.3 0.37 46.8 0.35 
1a 1.0 38 11100 29.9 0.37 44.6 0.35 

RW 1a L = 1800 cd/m2 14.3 0.18 14.3 0.39 

VNLS 
2a 2.0 76 6200 11.5 0.32 49.2 0.36 
2a 1.5 76 6200 9.4 0.33 46.5 0.36 
2a 1.0 114 6200 5.3 0.35 44.1 0.36 

RW 2a L = 1800 cd/m2 14.7 0.16 14.7 0.40 
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Model with simple view, directional – (7) 

d (m) IA (°) BA (°) Φ (lm) 
%A -0.01 0.00 -0.13 0.98 
U0 0.12 -0.23 0.94 0.00 
%G av -0.06 0.36 -0.82 -0.01 
PDG av 0.04 -0.09 -0.85 0.47 
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•  Most of the VNLS with BA = 114° (wide) 
satisfy all performance criteria.  

•  The total luminous flux is highly influential 
to the space availability. 

•  The beam angle is highly influential to the 
uniformity, average ground contribution, and 
average probability of discomfort glare. 



•  As a simulation tool, RADIANCE can be employed for 
predicting lighting performance of future solutions such 
as VNLS. 

•  The modeling approach is driven towards providing 
good directionality and complex view, while keeping the 
visual comfort comparable to the real window situation. 

•  The next steps will be improving all of the lighting 
aspects, as well as evaluating energy performance of 
the selected solutions with other simulation tools. 
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Conclusions & outlook 
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Indoor Air Quality & Photocatalytic Oxidation 

•  Indoor Air Quality (IAQ) is important: 
•  People in modern urban areas spend 

85%-90% of their time indoor 
•  Synthetic materials, combustion, 

human activities, industrial processes 
can release a range of pollutants, 
resulting in indoor air pollution 

•  Pollutants can be removed by source 
control, increasing ventilation rates 
or air purification. 

•  Photocatalytic Oxidation (PCO) is a 
potential technology for (passive) 
indoor air purification. 
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Photocatalytic Oxidation (PCO) modeling 

•  Previous research: 
1.  Development of a kinetic model for NOx (inorganic compound) 

 Q.L. Yu, M.M. Ballari, H.J.H. Brouwers (2009) (2010) 
 

2.  Implementation of the kinetic model in a Computation Fluid 
Dynamics (CFD) model 
 H.A. Cubillos Sanabria, (2011) 

• No radiance model was applied, causing to: 
−  Neglect the glass cover in the reactor setup (1) 
−  Assume a uniform irradiance distribution during modelling (2) 
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The concept 

•  A concept for PCO modelling is proposed, based on the 
previous research 
−  Radiance model 
−  Kinetics 
−  Computation Fluid Dynamics 
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Prediction air purification 
capability

Computational 
Fluid DynamicsKineticsRadiance 

model



The framework 
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First modeling study of the reactor setup 
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•  An omnidirectional radiant intensity distribution over the 
longitudinal axis of the light source model is assumed, 
expressed in Li [Wm-2sr-1]. 

•  The light source model is composed out of a:  
 (1) lamp base (no emission) 
 (2) border region (L = Ll /2) 
 (3) main light emitting area (L = Ll) 
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Validation 
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(rvu) -ab 1 -aa 0.3 -dj 1 -ds 0.1 



/ Unit Building Physics and Services PAGE 34 9/14/12 

(rvu) -ab 1 -aa 0.3 -dj 1 -ds 0.1 
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Result of simulation & analytical calculation 
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Conclusion and outlook 

•  Both the measurement and the simulations have inaccuracies; the 
inaccuracy of the stochastic calculation is obtained with statistics.   
•  The maximum error of the average values is ~4%, but due to uncertainty 

the error is raised to ~6% 
 

•  The analytical calculation could not provide a correct estimation of 
the Ecatalyst /Eglass  ratio. Therefore, an equation from simulated data 
was derived:  

Eglass = (0.0975·σcatalyst + 0.904)Ecatalyst  
•  The equation can be used to improve the kinetic model of NOx 

•  Secondary modeling study in which: 
•  The improved kinetic model is employed 
•  Radiance model is integrated into a CFD model  
•  Several cases are simulated in which the PCO is studied, using a 

benchmark office model for CFD 
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Questions? 


