The built environment...

- In the future, the built environment will need to deal not only with "energy saving", but also "very high-quality indoor environment"
 - Healthy
 - Productive
 - Comfortable
 - Energy-producing
 - ...
- Solutions are needed!

... Toward the future

The future is so uncertain and highly complex:

- The need to predict the performance of future solutions
- →using computational simulation tools
- →e.g. RADIANCE!

Radiance-online.org (2012)

Some familiar terms

Lighting **Light source** Raytracing **Wavelength** Uniformity Luminous intensity **Distribution Uncertainty** Building Performance Performance Simulation

Case #2

Building Materials

Technische Universiteit

University of Technology

/ Unit Building Physics and Services

Case #1

Building

Lighting

Building

9/14/12 PAGE 3

Case #1

Virtual Natural Lighting Solutions

Rizki A. Mangkuto Myriam B.C. Aries Evert J. van Loenen Jan L.M. Hensen

Unit Building Physics and Services Department of the Built Environment Eindhoven University of Technology Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Low availability of natural (day-)light!

an inn i an inn in mint I.

The idea

Virtual natural lighting solution (VNLS)

Technische Universiteit **Eindhoven** University of Technology

Approach towards VNLS (model)

Light directionality

Model without view, diffuse

- Typically diffuse light distribution
- Applied for situations where view is not considered the most important thing, e.g. when comparing energy consumption.

Philips Lighting (2007)

De Vries et al. (2009)

Smolders & de Kort (2012)

Model without view, diffuse – (2)

 For example, real windows under CIE overcast sky:

gensky -c -b 22.9

 ...compared to virtual windows:

light 11.856 11.856 11.856

 Combined with general lighting ETAP luminaire 2x28 W

Model without view, diffuse – (3)

University of Technology

/ Unit Building Physics and Services

Model with view, diffuse

- Typically (also) diffuse light distribution, but with image projected or displayed.
- Applied for situations where view is considered influential, e.g. when comparing glare perception from various view types.

Philips Homelab (2006)

Winscape (2011)

Model with view, diffuse - (2)

• For example, comparing 5 different images as viewing scene

"Creek"

"First Floor"

"Hairdresser"

"Night Skyline"

IJsselsteijn et al. (2008)

/ Unit Building Physics and Services

Model with view, diffuse - (3)

• 2D image mapped on light material

Ambience parameters: -ab 3 -aa 0.15 -ar 128 -ad 512 -as 256

Model with view, diffuse – (4)

Model with simple view, directional

- Still in conceptual model.
- View is simplified: green "ground" and blue "sky".
- Focused on directional light from the "ground" to the ceiling.
- Applied for optimising space availability and uniformity.

Model with simple view, directional – (2)

- Input variables:
 - Interval of tilt angle (°): 1.0; 1.5; 2.0
 - Beam angle (°): 38; 76; 114
 - Total luminous flux of the "sky" (lm): 6200, 11100, 19900
 - Distance between windows (m): 0; 0.75

Ambience parameters: -ab 4 -aa 0.15 -ar 128 -ad 512 -as 256 -ds 0.2

Model with simple view, directional – (3)

- Output variables:
 - Space availability: $%A = \frac{n(E \ge 500 \text{ lx})}{N} \times 100\%$; N = 1944

• Uniformity:
$$U_0 = \frac{E_{min}}{E_{av}}$$

• Average ground contribution on the ceiling:

$$%G_{av} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{E_{ground-i}}{E_{total-i}} \times 100\% \right]; N = 10$$

• Average probability of discomfort glare:

$$PDG_{av} = \frac{1}{4} (DGP + DGI_n + UGR_n + CGI_n)$$

where $DGI_n = 0.01452 \times DGI$; $UGR_n = 0.01607 \times UGR$;
 $CGI_n = 0.01607 \times CGI$; (Jakubiec & Reinhart, 2012)

Model with simple view, directional – (4)

- Compared to a similar scene where VNLS is replaced with real windows under CIE overcast sky, with equal average surface luminance.
- The proposed criteria:
 - Space availability: %A vNLS > %A RW
 - Uniformity: $U_{0 \text{ VNLS}} \ge U_{0 \text{ RW}}$
 - Average ground contribution on the ceiling:
 0.9(%G_{av RW}) ≤ %G_{av VNLS} ≤ 1.1(%G_{av RW})
 - Average probability of discomfort glare:

 $PDG_{av VNLS} \leq PDG_{av RW}$

Average surface luminance:
 L_{av} ≤ 3200 cd/m²

Model with simple view, directional – (5)

1a, VNLS

cd/m2

Туре	Conf.	IA (°)	BA (°)	Φ (lm)	Pos.	DGP	DGIn	UGR _n	CGI _n	PDG _{av}	Stdev
					А	0.24	0.21	0.36	0.39	0.30	0.09
VNLS	1a	2.0	76	11100	В	0.21	0.20	0.32	0.35	0.27	0.08
					С	0.27	0.33	0.46	0.48	0.38	0.10
RW	1a	L = 3200 cd/m ²			А	0.24	0.21	0.35	0.39	0.30	0.08
					В	0.21	0.19	0.31	0.33	0.26	0.07
					С	0.26	0.31	0.43	0.45	0.36	0.09

- Position C experiences the largest prob. of discomfort glare
- Standard dev. in VNLS scenes are comparable to those in RW scenes \rightarrow PDG_{av} can be used for comparing both VNLS and RW

250 3750

3250

2750

Results example of VNLS vs RW

Туре	Conf.	IA (°)	BA (°)	Φ (lm)	%A	U ₀	%G _{av}	PDG _{av}
	1a	2.0	38	11100	28.0	0.37	48.8	0.35
VNLS	1a	1.5	38	11100	29.3	0.37	46.8	0.35
	1a	1.0	38	11100	29.9	0.37	44.6	0.35
RW	1a	L	= 1800 cd	/m²	14.3	0.18	14.3	0.39
	2a	2.0	76	6200	11.5	0.32	49.2	0.36
VNLS	2a	1.5	76	6200	9.4	0.33	46.5	0.36
	2a	1.0	114	6200	5.3	0.35	44.1	0.36
RW	2a	L	= 1800 cd	/m ²	14.7	0.16	14.7	0.40

Technische Universiteit

University of Technology

Eindhoven

/ Unit Building Physics and Services

9/14/12 PAGE 20

Model with simple view, directional – (7)

- Most of the VNLS with BA = 114° (wide) satisfy all performance criteria.
- The **total luminous flux** is highly influential to the space availability.
- The **beam angle** is highly influential to the uniformity, average ground contribution, and average probability of discomfort glare.

Conclusions & outlook

- As a simulation tool, RADIANCE can be employed for predicting lighting performance of future solutions such as VNLS.
- The modeling approach is driven towards providing good directionality and complex view, while keeping the visual comfort comparable to the real window situation.
- The next steps will be improving all of the lighting aspects, as well as evaluating energy performance of the selected solutions with other simulation tools.

Case #2

Photocatalytic Oxidation Modelling

Ruben S. Pelzers Qingliang Yu Rizki A. Mangkuto Marcel G.C. Loomans Jos Brouwers

Unit Building Physics and Services Department of the Built Environment Eindhoven University of Technology Technische Universiteit **Eindhoven** University of Technology

Where innovation starts

TU

Indoor Air Quality & Photocatalytic Oxidation

- Indoor Air Quality (IAQ) is important:
 - People in modern urban areas spend 85%-90% of their time indoor
 - Synthetic materials, combustion, human activities, industrial processes can release a range of pollutants, resulting in indoor air pollution
- Pollutants can be removed by source control, increasing ventilation rates or air purification.
- Photocatalytic Oxidation (PCO) is a potential technology for (passive) indoor air purification.

Wallpaper

Photocatalytic Oxidation (PCO) modeling

- Previous research:
 - 1. Development of a kinetic model for NO_x (inorganic compound) Q.L. Yu, M.M. Ballari, H.J.H. Brouwers (2009) (2010)
 - 2. Implementation of the kinetic model in a Computation Fluid Dynamics (CFD) model

H.A. Cubillos Sanabria, (2011)

- No radiance model was applied, causing to:
 - Neglect the glass cover in the reactor setup (1)
 - Assume a uniform irradiance distribution during modelling (2)

The concept

- A concept for PCO modelling is proposed, based on the previous research
 - Radiance model
 - Kinetics
 - Computation Fluid Dynamics

The framework

First modeling study of the reactor setup

(a) reactor setup

(b) reactor

/ Unit Building Physics and Services

9/14/12 PAGE 28

Overview of the reactor setup model

/ Unit Building Physics and Services

9/14/12 PAGE 29

Light source model

 An omnidirectional radiant intensity distribution over the longitudinal axis of the light source model is assumed, expressed in L_i [Wm⁻²sr⁻¹].

The light source model is composed out of a:
(1) lamp base (no emission)
(2) border region (L = L₁/2)
(3) main light emitting area (L = L₁)

Sampling grid

9/14/12 PAGE 31

Validation

Transmission coefficient of the glass < 0.9273

Reflection coefficient catalyst surface = 0.88

LI =34.8 W/(m²sr)

(rtrace) -I -ab 5 -dj 1.0 -ds 0.05 -aa 0.1 -ar 256 -st 0.07 -ad 1024 -as 64

Impression: vertical cross-section

(rvu) -ab 1 -aa 0.3 -dj 1 -ds 0.1

/ Unit Building Physics and Services

9/14/12 PAGE 3

Impression: bottom-top & top-bottom view

(rvu) -ab 1 -aa 0.3 -dj 1 -ds 0.1

(a)

/ Unit Building Physics and Services

9/14/12 PAGE 34

Result of simulation & analytical calculation

Conclusion and outlook

- Both the measurement and the simulations have inaccuracies; the inaccuracy of the stochastic calculation is obtained with statistics.
 - The maximum error of the average values is ~4%, but due to uncertainty the error is raised to ~6%
- The analytical calculation could not provide a correct estimation of the $E_{\text{catalyst}}/E_{\text{glass}}$ ratio. Therefore, an equation from simulated data was derived:

$$E_{\text{glass}} = (0.0975 \cdot \sigma_{\text{catalyst}} + 0.904) E_{\text{catalyst}}$$

- The equation can be used to improve the kinetic model of NO_x
- Secondary modeling study in which:
 - The improved kinetic model is employed
 - Radiance model is integrated into a CFD model
 - Several cases are simulated in which the PCO is studied, using a benchmark office model for CFD

Questions?

TU e Technische Universiteit Eindhoven University of Technology

Where innovation starts