**eLAD** eLearning platform for Lighting and Daylighting

## Maria Konstantoglou

Lawrence Berkeley National Laboratory University of Thessaly, Volos, Greece

mkonstantoglou@lbl.gov https://elad.lbl.gov



grant-supported project through LBNL by the US Department of Energy (DOE)

Main team members: LBNL:

> Randolph Fritz (Radiance Scripting) Maria Konstantoglou (Radiance Scripting) Kirsten Heming (Project Coordinator)

SuPerB, Institute for the Sustainable Performance of Buildings: Joseph Deringer (Project Leader)



# eLAD enables users to learn about lighting and daylighting for commercial buildings

# eLAD is intended to be used in academic and applied professional settings





eLAD provides an interactive 3D environment enabling users to explore and learn about optimizing and integrating lighting systems

- # Open-source.
- # Available at no cost to users via web-based, public-domain delivery platforms.
- # Customizable, allows for scalability and flexibility to be used as a training guide, to a supplementary educational tool.











Participants:

- # Lawrence Berkeley National Laboratory
- # Stanford Research Institute
- # SuPerB, Institute for the Sustainable Performance of Buildings
- # International panel of lighting experts

Hayden McKay, Horton Lees Brogden Lighting Design Matthew Tanteri, Parsons School of Constructed Environments Prasad Vaidya, The Weidt Group Kevin Van Den Wymelenberg, University of Idaho Christopher Meek, University of Washington Aris Tsangrassoulis, University of Thessaly Heather Burpee, University of Washington Richard Mistrick, Penn State Susan Ubbelhode, University of Berkeley Michael Donn, Victoria University of Wellington Christoph Reinhart, Harvard University



## eLearning Software Platform

System Logic:

Using existing LBNL simulation Engines:

# Radiance,

For simulation-driven lighting and daylighting Scenarios

eLAD is an early adopter of WebGL

# WebGL provides support for 3D animated graphics in web sites

eLAD is built partly in Kuda, an authoring environment for WebGL









## CONTENT:

Ele

## wiki: https://elad.lbl.gov

Q

top

.....

|                                                                                                   | Page Discussion                                                                                          |                                                      |
|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| LADwiki                                                                                           | Light So                                                                                                 | ources                                               |
| Home                                                                                              | Contents [hide]                                                                                          | nos                                                  |
| Table of Contents                                                                                 | 1.1 Halogen                                                                                              |                                                      |
| nowledge Areas<br>Fundamentals<br>ualitative Impacts<br>uantitative Impacts<br>Daylighting Design | 3 High intensity disc<br>3.1 Metal Halid<br>3.2 Standard M<br>3.3 Pulse Start<br>3.4 Ceramic M<br>4 LEDs | charge lamps<br>e<br>(H lamps<br>MH lamps<br>H Lamps |
| ctric Lighting Design                                                                             |                                                                                                          |                                                      |
| Lighting Controls                                                                                 | ! Switches                                                                                               | Lamps                                                |
| Design Tools                                                                                      | ! Dimmers                                                                                                |                                                      |
| Applications                                                                                      | Scene Control and escent lam                                                                             | los are filament                                     |
| LAD Project Info                                                                                  | IScheduling higher the color te                                                                          | mperature of th                                      |
| Wiki                                                                                              | I Timers significantly more                                                                              | ineat is generat                                     |
| Curriculum                                                                                        | Load Shedding power distribution                                                                         | that has increa                                      |
| Software                                                                                          | Emergency Overrides tely 280                                                                             | 00 for standard                                      |
|                                                                                                   | Occupancy/Vacancy the filan                                                                              | tent can becom<br>the surface are                    |
|                                                                                                   | Photosensor/based Control<br>other optical device                                                        | es c <mark>an be des</mark> i                        |
|                                                                                                   | I Sun, Shading and Glazing<br>Controls                                                                   | Policy Act of 19                                     |
|                                                                                                   | ! Control Protocols                                                                                      | the standard la                                      |
|                                                                                                   | Integrating Control Systems                                                                              | ent lamps that a                                     |
|                                                                                                   | Occupant Behavior                                                                                        | savings. Some                                        |
|                                                                                                   | Installation and Maintenance                                                                             |                                                      |

## ight Sources and Ballasts

| Lamps                                                                                       |
|---------------------------------------------------------------------------------------------|
|                                                                                             |
| re filament lamps that generate light by passing current through a tungsten filament,       |
| en to a high temperature that causes it to glow (emit light). The hotter the filament, the  |
| rature of the light. This method of generating light is inherently inefficient, however, as |
| is generated than light.                                                                    |

nt generated by a glowing filament is generally quite good, with a smooth spectral has increased output with increased wavelength, creating warm light (CCT of standard incandescent lamps operated at rated voltage) with high CRI.

can become exceedingly bright, some incandescent lamps are frosted to diffuse the surface area of the bulb. Clear bulbs permit more optical control, since reflectors and an be designed to carefully control light from a small filament.

Act of 1992 (EPACT) and recent legislation (Energy Independence Security Act, outlawed a number of commonly used incandescent lamps, with the 2007 legislation standard lamps used in residences in phases between 2012 and 2014. After these mps that are sold in the U.S. will be required to meet specific energy efficiency and goal is for consumers to switch to comparable compact fluorescent lamps, which offer ngs. Some incandescent products will be converted to EISA compliant halogen

Incandescent lamps are easily dimmed by lowering the supplied voltage to the lamp. Dimming results in a reduction in both efficacy and lamp color temperature.

## Phase 1 of the project completed in the end of July 2012

Demo available in the wiki:

http://elad.lbl.gov/index.php/Demo\_eLAD



## SCENARIO PLAYER: Graphic User Interface





## SCENARIO PLAYER: Graphic User Interface





## SIMULATION variables

Combinations of variables lead to simulation cases

| June 21, 2pm        |
|---------------------|
|                     |
|                     |
|                     |
| + Simulation Period |
| + SITE              |
| + ENVELOPE          |
| + INTERIOR          |
| + LIGHTING SYSTEMS  |

| Building System Variable |            | Variable                   | Phase 1 Variable Options - current                                                                                                                                                     |  |  |
|--------------------------|------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                          |            | Scenario Description       |                                                                                                                                                                                        |  |  |
|                          | Scenario   | Simulation Period          | <ul> <li>June 21, 2pm</li> <li>Dec 21, 10am</li> </ul>                                                                                                                                 |  |  |
|                          | Site       | Location                   | <ul> <li>Palm Springs, CA</li> <li>Pittsburgh, PA</li> </ul>                                                                                                                           |  |  |
|                          |            | Site Context               | <ul> <li>High urban (20 stories)</li> <li>Low suburban (1 story)</li> </ul>                                                                                                            |  |  |
|                          |            | Sky Condition              | <ul><li>Clear sky</li><li>Cloudy</li></ul>                                                                                                                                             |  |  |
| [                        |            | Building Orientation       | Azimuth = 0                                                                                                                                                                            |  |  |
|                          |            | Office Orientation         | South                                                                                                                                                                                  |  |  |
|                          | Building   | Number of Floors           | • 5                                                                                                                                                                                    |  |  |
|                          |            | Floor location in Building | • 3rd                                                                                                                                                                                  |  |  |
|                          | Space Llee | Space Type                 | Open office                                                                                                                                                                            |  |  |
|                          | Space Use  | Occupancy                  |                                                                                                                                                                                        |  |  |
|                          |            | Skin Type                  | <ul> <li>Single skin</li> </ul>                                                                                                                                                        |  |  |
|                          |            | Wall Type                  | Curtain wall                                                                                                                                                                           |  |  |
|                          |            | Glass Type                 | <ul> <li>Single pane</li> </ul>                                                                                                                                                        |  |  |
|                          | Envelope   | Glass Transmittance        | • 0.4<br>• 0.6                                                                                                                                                                         |  |  |
|                          |            | Internal Shading           | <ul> <li>View window - blinds (closed)</li> <li>View window - blinds (horizontal)</li> <li>View window - none (un)</li> </ul>                                                          |  |  |
|                          |            | External Shading           | <ul> <li>Fixed overhang/shelf</li> <li>None</li> </ul>                                                                                                                                 |  |  |
|                          |            | Shading Controls           |                                                                                                                                                                                        |  |  |
|                          |            | Window-Wall Ratio          | • 0.4<br>• 0.6                                                                                                                                                                         |  |  |
|                          | Interior   | Surface Reflectance        | <ul> <li>High (wall 0.8, ceiling 0.9, floor 0.3, work surface 0.6, partition 0.7)</li> <li>Low (wall 0.4, ceiling 0.7, floor 0.1, work surface 0.4, partition 0.5)</li> </ul>          |  |  |
|                          |            | Ceiling Height             | - 9'<br>- 11'                                                                                                                                                                          |  |  |
|                          |            | Partition Height           | • 42"<br>• 54"                                                                                                                                                                         |  |  |
|                          |            | Furniture Layout           | Rectilinear #1     Rectilinear #2                                                                                                                                                      |  |  |
|                          | Lighting   | Lighting Vintage           | <ul><li>2000 Ceiling mounted</li><li>2010 Task ambient</li></ul>                                                                                                                       |  |  |
|                          |            | Controls                   | <ul> <li>Ceiling mounted (on/off)</li> <li>Ceiling mounted (daylight dimming)</li> <li>Task (on/off) ; ambient (on/off)</li> <li>Task (on/off) ; ambient (daylight dimming)</li> </ul> |  |  |



## SIMULATION variables

| JIES             | Building System            | Variable                     | Phase 1 Variable Options - current                                                                                                                                                     |   |
|------------------|----------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                  |                            | Scenario Description         |                                                                                                                                                                                        |   |
|                  | Scenario                   | Simulation Period            | <ul> <li>June 21, 2pm</li> <li>Dec 21, 10am</li> </ul>                                                                                                                                 |   |
|                  |                            | Location                     | Palm Springs, CA     Pittsburgh, PA                                                                                                                                                    |   |
|                  | Site                       | Site Context                 | <ul> <li>High urban (20 stories)</li> <li>Low suburban (1 story)</li> </ul>                                                                                                            |   |
|                  |                            | Sky Condition                | <ul> <li>Clear sky</li> <li>Cloudy</li> </ul>                                                                                                                                          |   |
| SCENARIO         | IIILE                      | Building Orientation         | - Azimuth = 0                                                                                                                                                                          |   |
| An employe       | ee who works near          | a window in an open office,  | South                                                                                                                                                                                  |   |
| complains t      | o the facility manage      | r about receiving headaches  | **** 5                                                                                                                                                                                 |   |
| from excess      | sive glare in their w      | rkspace. By addressing this  | 3rd                                                                                                                                                                                    |   |
| issue, the f     | acility manager has        | to maintain acceptable light | Open office                                                                                                                                                                            |   |
| 1                |                            | Scoupancy                    | * *                                                                                                                                                                                    |   |
|                  |                            |                              |                                                                                                                                                                                        |   |
|                  |                            |                              |                                                                                                                                                                                        |   |
|                  |                            |                              |                                                                                                                                                                                        |   |
|                  |                            |                              |                                                                                                                                                                                        |   |
|                  |                            |                              |                                                                                                                                                                                        |   |
|                  |                            |                              |                                                                                                                                                                                        |   |
|                  |                            |                              | 0.3, work surface 0.6, partition 0.7)<br>0.1, work surface 0.4, partition 0.5)                                                                                                         |   |
|                  |                            |                              | 11'                                                                                                                                                                                    |   |
|                  |                            |                              | 42"<br>54"                                                                                                                                                                             |   |
| ▶ ◀) 0:15 / 0:24 |                            |                              | Rectilinear #1<br>Rectilinear #2                                                                                                                                                       |   |
|                  |                            | Lighting Vintage             | 2000 Ceiling mounted<br>2010 Task ambient                                                                                                                                              | - |
|                  | press space ba<br>Lighting | to continue<br>Controls      | <ul> <li>Ceiling mounted (on/off)</li> <li>Ceiling mounted (daylight dimming)</li> <li>Task (on/off) ; ambient (on/off)</li> <li>Task (on/off) ; ambient (daylight dimming)</li> </ul> |   |



## SIMULATION variables

| OIMOLATION Variables                  | Building System | Variable                   | Phase 1 Variable Options - current                                                                                                                                                              |
|---------------------------------------|-----------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | _               | Scenario Description       |                                                                                                                                                                                                 |
|                                       | Scenario        | Simulation Period          | - June 21, 2pm<br>- Dec 21, 10am                                                                                                                                                                |
|                                       | Site            | Location                   | <ul> <li>Palm Springs, CAA</li> <li>Pittsburgh, PA</li> </ul>                                                                                                                                   |
|                                       |                 | Site Context               | <ul> <li>High urban (20 stories)</li> <li>Low suburblaar(11story)y)</li> </ul>                                                                                                                  |
| Naming                                |                 | Sky Condition              | • Clear sky/<br>• Cloudy                                                                                                                                                                        |
|                                       | Building        | Building Orientation       | • Azimutth==0                                                                                                                                                                                   |
| v - view,                             |                 | Office Orientation         | - South                                                                                                                                                                                         |
| m – mode,                             |                 | Number of Floors           | • 5                                                                                                                                                                                             |
| d - date,                             |                 | Floor location in Building | - 3rd                                                                                                                                                                                           |
| g - geometry,                         | Space Lice      | Space Type                 | Open office                                                                                                                                                                                     |
| n – neighborhood,                     |                 | Occupancy                  |                                                                                                                                                                                                 |
| s- sky conditions                     |                 | Skin Type                  | - Single skin                                                                                                                                                                                   |
| t transmittance                       |                 | Wall Type                  | Curtainweall                                                                                                                                                                                    |
| t – transmittance,                    | Envelope        | Glass Type                 | - Single panee                                                                                                                                                                                  |
| I - Internal shading,                 |                 | Glass Transmittance        | = <b>0.4</b><br>= 0.6                                                                                                                                                                           |
| w – window/wall ratio,                |                 | Internal Shading           | <ul> <li>View windbwy-bbiridsl (closed) d)</li> <li>View window - blinds (horizontal)</li> <li>View window - none (up)</li> </ul>                                                               |
| p - partition height,                 |                 | External Shading           | Fixed overhang/sbbiff     None                                                                                                                                                                  |
| f - furniture lavout,                 |                 | Shading Controls           |                                                                                                                                                                                                 |
| z - ceiling height,                   |                 | Window-Wall Ratio          | • 0.4<br>• 0.6                                                                                                                                                                                  |
| I – lighting vintage,<br>c - controls |                 | Surface Reflectance        | <ul> <li>High ((wall0088, ociliting @ .9.9f) dor c0: 3, Syorko skustace: 0.66.0p2(ritioti 007) 0.7)</li> <li>Low (wall 0.4, ceiling 0.7, floor 0.1, work surface 0.4, partition 0.5)</li> </ul> |
|                                       | Interior        | Ceiling Height             | = 9'<br>- 11'                                                                                                                                                                                   |
|                                       | Interior        | Partition Height           | • 42"<br>• 54"                                                                                                                                                                                  |
|                                       |                 | Furniture Layout           | Rectilinear #1     Rectilinear#22                                                                                                                                                               |
|                                       | Lighting        | Lighting Vintage           | 2000 Ceilingmountedd     2010 Task ambient                                                                                                                                                      |
|                                       |                 | Controls                   | <ul> <li>Ceilingmounted(do/of0)ff)</li> <li>Ceiling mounted (daylight dimming)</li> <li>Task (on/off) ; ambient (on/off)</li> <li>Task (on/off) ; ambient (daylight dimming)</li> </ul>         |



## SIMULATION variables: Naming



v3-m1-d1-g1-n1-s1-t1-i2-e1-w1-r1-p1-f1-z2-l2-c2



# Radiance is used to calculate and visualize the results of student decisions

- # Integration into a workflow with 3ds Max and WebGL
- # simulation of daylighting controls





Radiance Visualization





**Radiance Visualization** 



Scripts for Radiance renderings are written in:

# C Shell,

# Python,

# AWK.

Scripts may run directly:

- # in any unix-like environment,
- # or as batch jobs in the Portable Batch System.

Lawrence Berkeley National Labs Lawrencium cluster was used for the rendering process



Two main groups of simulation scripts:

A: scripts used to run simulations [e.g.: run.csh]

B: scripts that support the simulation group

# some generate the files and directories used by the first group [e.g.:Gen\_numbered\_runset gathers the files for a group of simulations]

C: Secondary group with scripts specific to the cluster # e.g.: a few scripts used to organize JPEG files or to rerun specific simulations



1/ gen\_runset is used to create simulation case directories named after simulation case codes: e.g. "d1-g1-n1-s1-t1-i1-e1-w1-r1-p1-f1-z1-l1-c1"

2/ These codes are then linked with shorter case numbers such as "C00001"

3/ Run.csh is then used, either directly or as a batch job, to run the simulations for a single simulation case

# It sets up a working directory and then defines the path to the directory depending on the case number

# It generates the Radiance control script by calling the

gen\_rif\_file

# It sets up the selected views to render

4/ When images are generated, gather\_jpegs gathers all the jpeg renderings into a single "jpegs" directory







If the median illuminance on a row of desks is less than 600 lux the overhead luminaires over that row are turned on

When desk lamps are present, the following rule is used: when median illuminance in a row is:

- # over 600 lux, 25% of the desk lamps will be on
- # between 300 and 600 lux, 50% of the desk lamps will be on
- # under 300 lux, all the desk lamps will be on



meter\_workplane\_illuminance script -- measure the
median illuminance on each row of desks
meter\_workplane\_illuminance casecode \
>median\_ill\_by\_row

Script body:

- # Create the octree
- # Run rtrace
- # Convert irradiances to illuminances
- # Find the median illuminance of each row



## Aliasing is used to control luminaires in the model

- # Ceiling luminaire row 4
  inherit alias ceiling\_illum\_r4 luminaire\_pendant3\_CB087\_light
  inherit alias ceiling\_glow\_r4 mat\_luminaire\_pendant\_interior
- # Desk luminaire row 4 level lo
  inherit alias desklamp\_illum\_r4\_lo light\_off
  inherit alias desklamp\_glow\_r4\_lo glow\_off
- # Desk luminaire row 4 level med inherit alias desklamp\_illum\_r4\_med desk\_lamp\_one\_light inherit alias desklamp glow r4 med glow off
- # Desk luminaire row 4 level hi
  inherit alias desklamp\_illum\_r4\_hi desk\_lamp\_one\_light
  inherit alias desklamp\_glow\_r4\_hi glow\_off







## RADIANCE Renderings: Sections



#### eLAD



## RADIANCE Renderings: Panoramic Views





## RADIANCE Renderings: Panoramic Views





## RADIANCE Renderings: Panoramic Views











eLAD development:

Adding more variables in Phase 2

Radiance:

- # Integrating Radiance into the Builder
- # Annual and Seasonal Simulations
- # Producing more renderings
- # Running renderings on a web server

from JavaScript

# Improving Daylighting Controls



## **eLAD** eLearning platform for Lighting and Daylighting

Thank you.

mkonstantoglou@lbl.gov https://elad.lbl.gov

