

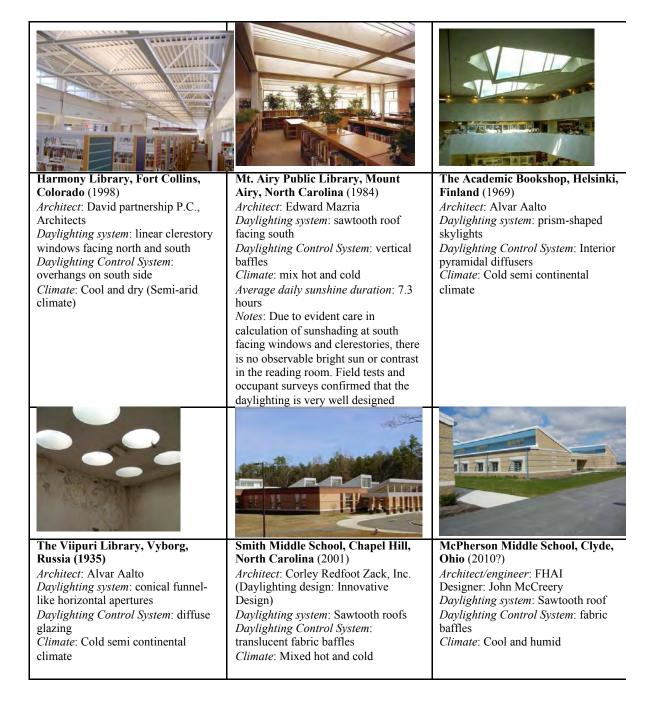
ANALYSIS OF DAYLIGHTING PERFORMANCE AND ENERGY SAVINGS IN ROOF DAYLIGHTING SYSTEMS

COMMITTEE: WAYNE PLACE JIANXIN HU SOOLYEON CHO STEPHEN TERRY LADAN GHOBAD PH.D. IN DESIGN

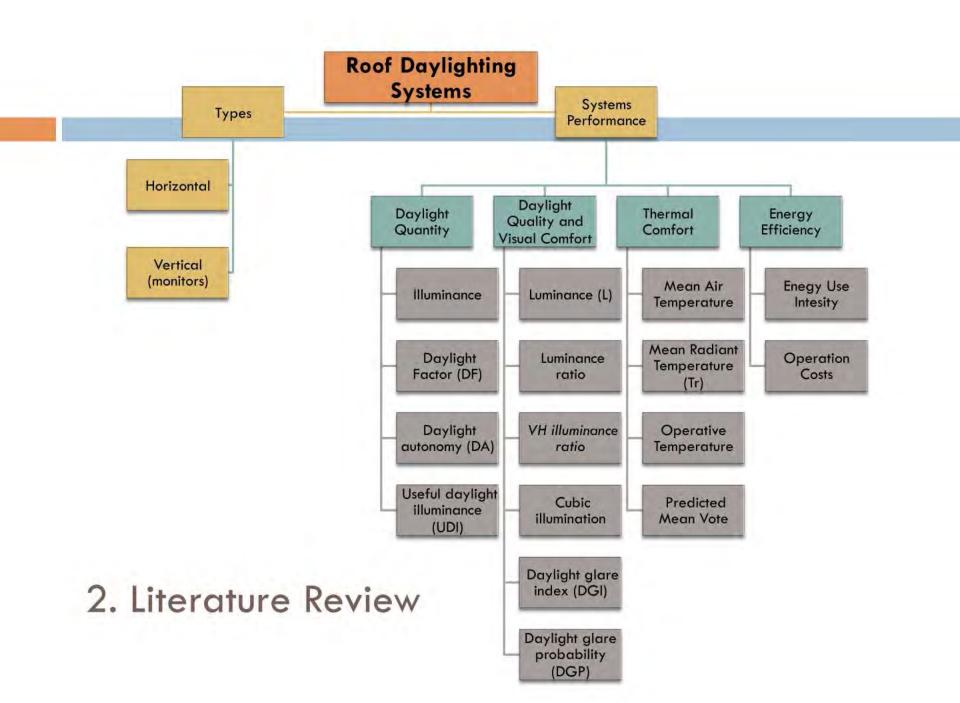
North Carolina State University College of Design

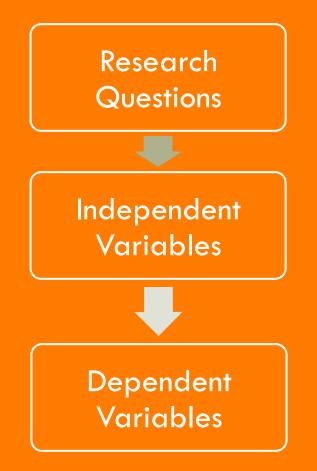
Contents

- 1. Introduction
- 2. Literature Review
- 3. Research Design
- 4. Methodology
- 5. Results Analysis
- 6. Conclusions


1. Introduction

Analysis of Daylighting Performance and Energy Savings in Roof Daylighting Systems


- Toplighting has great potentials
 - Reduce 90% of electric lighting use in DL hours
 - Could be installed on 50% area of non-residential buildings (DOE/EIA 1983)
- Roofing systems has potentials for research
 - Architectural realities are ignored in simulation research



North Carolina Art Museum, Raleigh, NC (2010)Architect: Thomas Phifer and Partners (local architect: Pearce Brinkley Cease + Lee)Daylighting system: 362 Horizontal apertures, called "elliptical oculi", which are located in long, parallel, coffered vaultsDaylighting Control System: Curved panels with blades on top of the roof Climate: Mixed hot and cold	The Rensnick Pavilion (LACMA Expansion), California (2006-2010) Architect: Renzo Piano Daylighting system: glazed sawtooth roof facing north and a horizontal layer of translucent glass underneath Daylighting Control System: large overhangs on the tilted edges of the sawtooth roof Climate: Moderate marine climate	Expansion of the High Museum of Art, Atlanta, Georgia (1999- 2005) Architect: Renzo Piano Daylighting system: numerous light scoops creating clear glass shadowed by lipstick shades facing north. Daylighting Control System: Fiberglass-reinforced molded gypsum shades Climate: Warm and humid
The Menil Collection, Houston, Texas (1982-1987) Architect: Renzo Piano Daylighting system: Multilayer roof composed of exterior tilted glazing connected two by two and giant louvers. Daylighting Control System: Exterior curved louvers; called "leaves", control daylight from the roof. In the galleries, the curve of the "leaf" blocks direct sunlight and scatters the light reflected off the neighboring leaf. Climate: Hot and Humid climate	Beyeler Foundation Museum , Riehen, Switzerland (1992-1997) Architect: Renzo Piano Daylighting system: Sawtooth louvers facing north built on top of horizontal structural layer of glass Daylighting Control System: exterior tilted louvers made of translucent laminated glazing material and interior horizontal louvers made of metal mesh frames Climate: Temperate	Nasher Sculpture Center, Dallas, Texas (1999-2003) Architect: Renzo Piano Daylighting system: double-layer roof composed of slightly curved glass vaults with aluminum sunshade panels on top. Daylighting Control System: cast aluminum sun-shading panels with round holes facing towards north Climate: Warm and humid climate

Arup Campus Office, Solihull, England Architect: Arup Associates Daylighting system: lighting units designed to capture diffuse north light through an opening towards north and to control south direct light via louvers designed for the units' south surface.	Heelis Office Building, Swindon, England (2007) Architect: Feilden Clegg Bradley with Max Fordham as M&E consultant Daylighting system: A line of north-facing apertures on a side of a gable roof Daylighting Control System: none, diffuse light enters the space, ventilation ducts and PV panels cast shadow on some times in a year Climate: Mild and humid Notes: Mounting PV panels on the south- facing side and windows on the north-facing side of the roof provides high level of energy efficiency in this building.	IDeAs office Building, Santa Clara, California (2007) Architect: EHDD Architecture Daylighting system: Skylights (tilted by low angles) Daylighting Control System: Diffuse glazing material of skylights Climate: Moderate marine climate Notes: In a remodeling project, daylighting was added to the building, which was built in 1960s. Photovoltaic cells mounted on the roof eliminate provides the remaining power for the building.
Gothenburg Law Court Extension, Gothenburg, Sweden (1937) Architect: Gunnar Aspuland Daylighting system: one large linear sawtooth aperture facing south for brightening the central Great Hall Daylighting Control System: Climate: Mild climate Note: large south facing windows and clerestories could lead to savings in heating energy if night insulation was employed. In addition, no automatic lighting controls exist to respond to natural light. Therefore, this building fails to save energy through its daylighting strategy.	Spectrum 7 Building, Milton Keynes, EnglaInd Architect: ECD partnership, Engineer: Arup Daylighting system: 60 degrees tilted apertures in a saw-tooth roofs Daylighting Control System: Reflective horizontal surface underneath the aperture.	Metropoli Fundation Building, Madrid, Spain Architect: Angel de Diego Rica Daylighting system: Roof monitors

Research Questions

- 1. How can each roof daylighting system be optimized to reach the best results in terms of daylighting without creating visual discomfort?
- 2. How can each roof daylighting system be optimized in terms of energy consumption?
- 3. What are the potential savings in building operating energy and operating cost that can be achieved by implementing different designs for roof daylighting systems?

Independent Variables

Toplighting Configurations and Design

- Horizontal Apertures in Flat Roof (Square and Linear Skylights)
- Vertical Roof Apertures Facing Two Opposite Directions (Roof Monitors)

Buildings Location

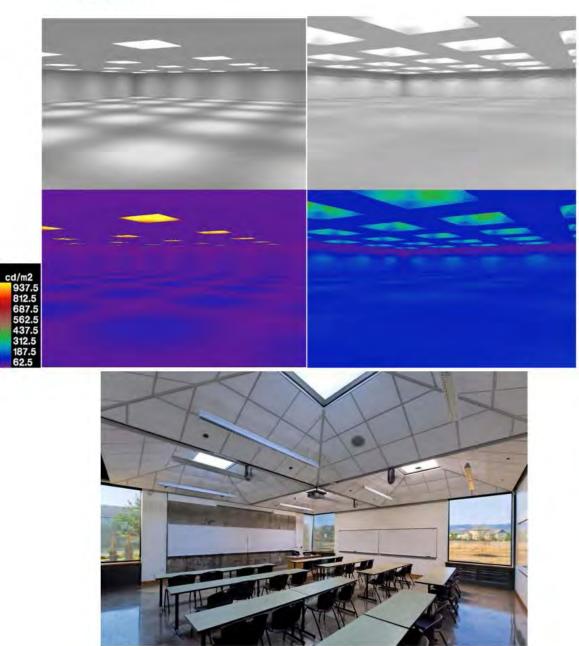
- Boston
- Miami
- The Aperture to Floor Area Ratio (AFR)
 - Skylights: 2%, 3.5%, 5.5%, 7.5%, 10%
 - Roof Monitors: 15%, 20%, 25%

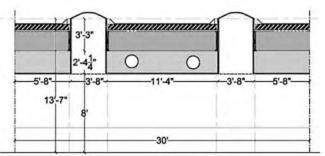
Dependent Variables

Lighting Assessment

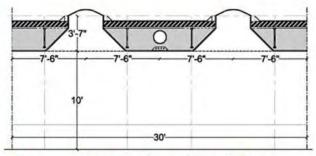
- Quantity of Available Daylight (illuminance)
 - Single-time Spatial Distribution
 - Annual Daylight
- Monthly Electric Lighting Consumption (kWh)
- Daylight Glare Probability (DGP)

Whole- building Energy Assessment

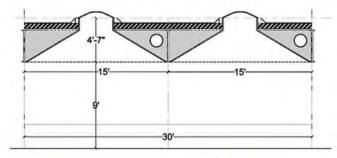

- Monthly Heating and Cooling Energy Consumption (kBtu)
- EUI (Energy Use Intensity) (kBtu/sqft/yr)


Total Operation Costs

- Annual Costs (\$/yr)
- Savings (\$/yr)



Skylights



1. Un-integrated Systems, Square Light Well

2. Integrated Systems, Beveled Light Well

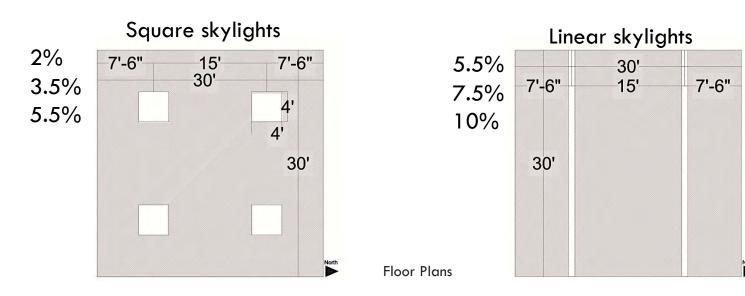
3. Integrated Systems, Extended Splayed Light Well

Skylights' Properties

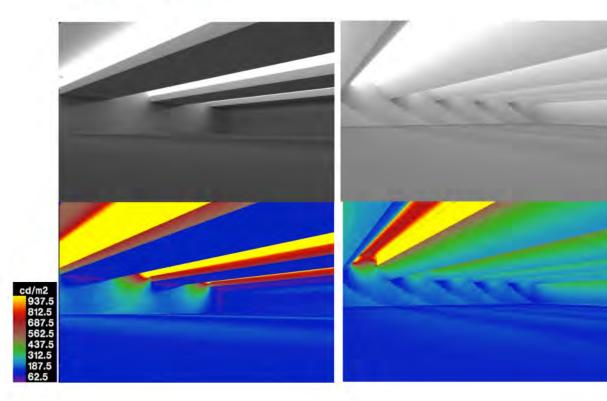
Skylights: Two Lexan plastic sheets

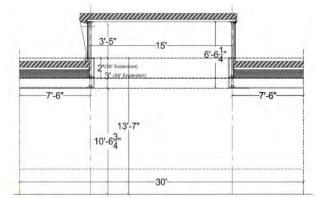
Thermal Properties

□ U-value: Clear Part: 2.59 W/m² K

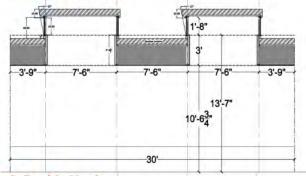

(Skylight Assembly's U-value is changing) Opaque Part: 0.187 W/m² K (R-30)

Visual Properties

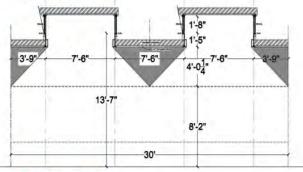

Skylight Vt= 42%


Skylights Glazing Area Aperture Area to Floor Area Ratio (AFR)

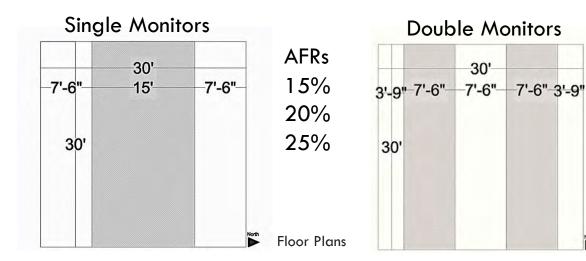
	Floor Area Illuminated		AFR	Number of Apertures	Clear (Len	0		Glazing dth
Units	ft^2	m^2	%		ft	m	ft	m
C	000	83.6	2	4	2.08	0.63	2.08	0.63
Square Apertures			3.5		2.83	0.86	2.83	0.86
Apertures			5.5		3.50	1.07	3.50	1.07
Tingen	900		5.5		30	9.14	0.83	0.25
Linear			7.5	2	30	9.14	1.13	0.34
Apertures			10		30	9.14	1.50	0.46



Roof Monitors



1. Single Monitors


2. Double Monitors

3. Double Monitors Minimum Light Well

Roof Monitors Glazing Area Aperture Area to Floor Area Ratio (AFR)

	AFR	Length Of Module		Reduction Factor On The Horizontal Glazing	Effective Horizontal Glazing Dimension			Glass Area In One Panel		Height Of The Glass		
		ft	m		ft	m	ft2	m2	ft	m		
Single	0.15	30	9.14	0.9	27	8.1	67.5	6.27	2.5	0.76		
Monitors (900 ft ²	0.20	30	9.14	0.9	27	8.1	90	8.36	3.3	1.00		
(900 ft) $/83.6 \text{ m}^2)$	0.25	30	9.14	0.9	27	8.1	112.5	10.45	4.2	1.28		
Double	0.15	30	9.14	0.9	27	8.1	33.75	3.13	1.3	0.39		
Monitors (900 ft ²	0.20	30	9.14	0.9	27	8.1	45	4.18	1.7	0.52		
(300 ft) /83.6 m ²)	0.25	30	9.14	0.9	27	8.1	56.25	5.23	2.1	0.64		

Roof Monitors' Properties

North-facing Glass: Clear, double layers of glass

- Vt: 65% (accounting for structural members' obstruction)
- U-value (center): 1.42 W/m²K
- **SHGC: 0.312**

South-facing Glass: Diffuse, double layers:

1. Velux laminated glass with LoE coating

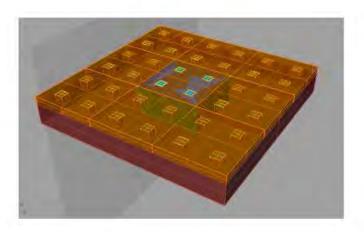
2. Clear glass

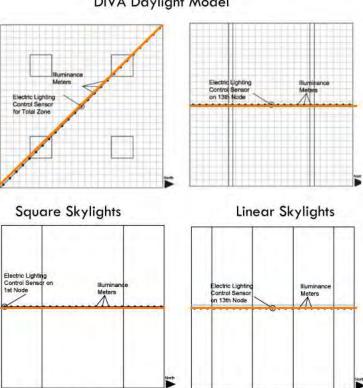
- Vt: 50% (accounting for structural members' obstruction)
- U-value (center): 1.42 W/m²K
- **SHGC: 0.386**

Thermal Properties of Glazing Assemblies

Effect of frames and curbs on overall U-values of the glazing

	AFR	Glazing Dimension		U Average of Glazing		Glazing UA		Height	Curb UA	Overall UA (Curb UA+Glass UA)	Average U-value for Assembly	
		mxm	inch x inch	W/m2K	Btu/hr.Ft2.K	Btu/hr. F	m	inch	Btu/hr. F	Btu/hr. F	W/m2K	Btu/hr.Ft2.K
	2	0.64 x 0.64	25" x 25"	3.41	0.60	2.61	0.17	6.50	0.90	3.51	4.59	0.81
Square Apertures	3.5	0.86 x 0.86	34" x 34"	3.20	0.56	4.52	0.17	6.50	1.18	5.71	4.04	0.71
	5.5	1.07 x 1.07	42" x 42"	3.09	0.54	6.66	0.17	6.50	1.43	8.10	3.75	0.66
	5.5	2.29 x 0.25	90" x 9.9"	3.74	0.66	4.07	0.17	6.50	1.44	5.51	5.06	0.89
Linear Apertures	7.5	2.29 x 0.34	90" x 13.5"	3.47	0.61	5.15	0.17	6.50	1.45	6.60	4.45	0.78
200	10	2.29 x 0.46	90" x 18"	3.28	0.58	6.50	0.17	6.50	1.47	7.97	4.03	0.71

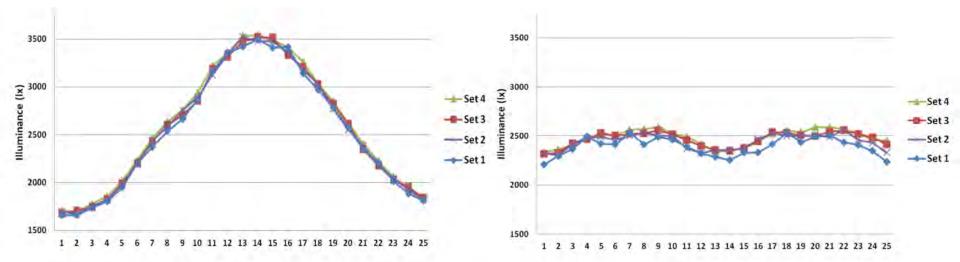

	AFR	Glass Horizor Dime	ntal x Vertical nsion	U Avera	ge of Glazing	Glazing UA	(Cu	Height urb is osed of	Curb UA	Overall UA for Skylights (Curb		e U-value for sembly
		mxm	ft x ft	W/m2K	Btu/hr.Ft2.K	Btu/hr. F	m	inch	Btu/hr. F	Btu/hr. F	W/m2K	Btu/hr.Ft2.K
Single Monitors	15	2.25 x 0.76	7.5 x 2.5	1.86	0.33	6.13	0.25	9.75	2.57	8.70	2.64	0.46
(Length 30'/	20	2.25 x 1.00	7.5 x 3.3	1.78	0.31	7.82	0.25	9.75	2.57	10.38	2.36	0.42
9.14m)	25	2.25 x 1.28	7.5 x 4.2	1.73	0.30	9.50	0.25	9.75	2.57	12.07	2.19	0.39
Double Monitors	15	2.25 x 0.39	7.5 x 1.3	2.19	0.38	3.61	0.25	9.75	2.57	6.17	3.74	0.66
(Length 30'/ 9.14m)	20	2.25 x 0.52	7.5 x 1.7	2.02	0.36	4.45	0.25	9.75	2.57	7.02	3.19	0.56
	25	2.25 x 0.64	7.5 x 2.1	1.92	0.34	5.29	0.25	9.75	2.57	7.86	2.86	0.50



1. Lighting Assessment

1. 1. Single-time Spatial Distribution of Daylighting

- Tool: RADIANCE, DIVA-for-Rhino plug-in ٠
- Daylight Model:90'x90' floor are composed ٠ of 9 identical modules
- Simulation Time: 12 pm, 21 Sept ٠
- Sky Condition: Sunny ٠



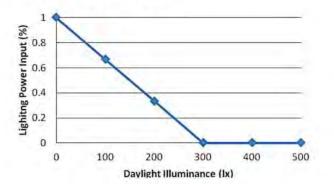
DIVA Daylight Model

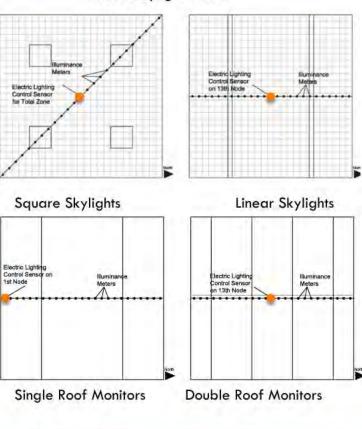
Single Roof Monitors

Double Roof Monitors

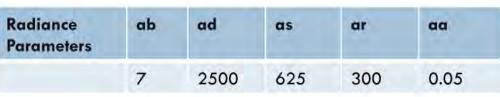
		Dayligh	iting Pa	iramete	rs	Minimum Illum Axis at Tasl	Max Relative Error Compared to the 4th Set (%)		
Vertical Aperture	ab	ad	as	ar	aa	Single Monitor (Minimum occurs at 1st sensor on middle NS axis)	Double Monitor (Minimum occurs at center/13th sensor on middle NS Axis)	Single Monitor	Double Monito r
Set 1	7	2500	625	300	0.05	1660	2284	-3.64	-8.67
Set 2	8	3600	900	600	0.05	1669	2354	-2.98	-4.97
Set 3	8	4624	1156	900	0.05	1673	2359	-2.79	-3.49
Set 4	8	5184	1296	1200	0.03	1703	2342	0	0

Radiance Parameters	ab	ad	as	ar	aa
	8	5184	1296	1200	0.03

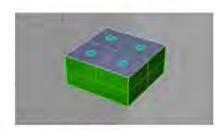

1. Lighting Assessment


1.2. Dynamic Daylighting

- Tool: DAYSIM, DIVA-for-Rhino plug-in
- Simulation Time: Annual Simulation
- Sky Condition: Weather Data File
- Sensors Location


1.3. Electric Lighting Estimation

- Tool: EnergyPlus
- Electric power input: DAYSIM (CSV files)
- Daylighting Control: Dimming System
- Occupancy Schedule: 9am-5pm weekdays
- Illuminance Target: 300 lx
- LPD: 0.9 W/ft²



DIVA Daylight Model

2. Energy Assessment

Tool: EnergyPlus Energy Model: One thermal Zone 30'x30' module with adiabatic walls Adiabatic ground

DIVA Thermal Model (Skylights)

2.1. CONSTRUCTION MATERIALS
2.2. INTERNAL LOADS
2.3. AIR CIRCULATION
2.4. HVAC SYSTEM

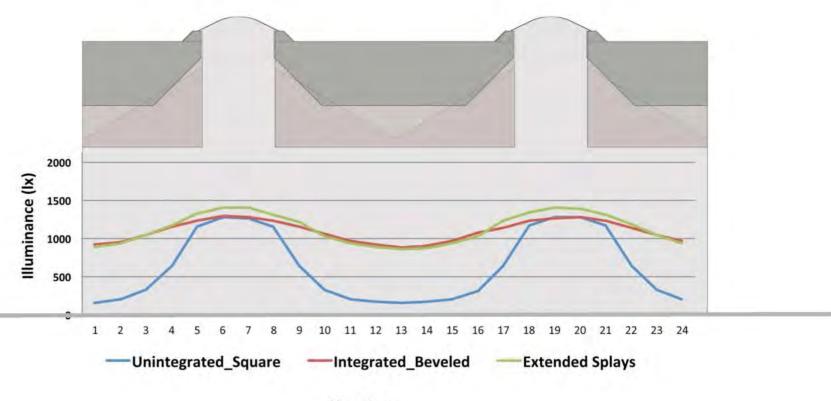
Cooling System: AC unit (COP 3)
Heating System: Gas Furnace (COP 0.8)

2.5. SCHEDULES

Heating Setpoint: 22 C
Cooling S

Heating Setback: 17 C

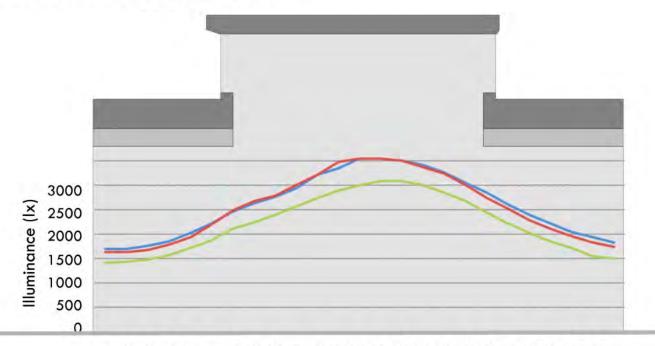
Cooling Setpoint: 24.5 C Cooling Setback: 32 C


5. Results Analysis

5. Result Analysis

Daylight Illuminance Distribution

Skylights 5.5% AFR



Boston

5. Result Analysis

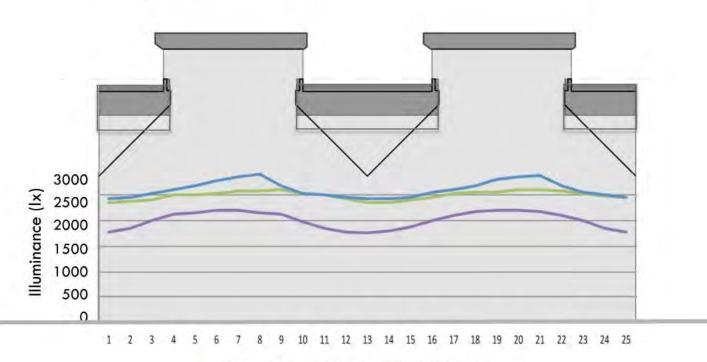
Daylight Illuminance Distribution

Roof Monitors 20% AFR

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Boston_2'DepthLW'

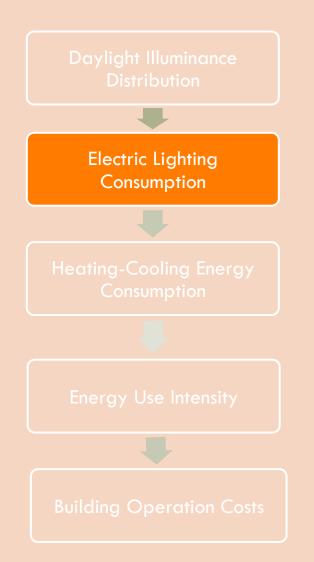
-Boston_3'DepthLW' Miam


Miami_2'DepthLW

Single Monitors Boston & Miami

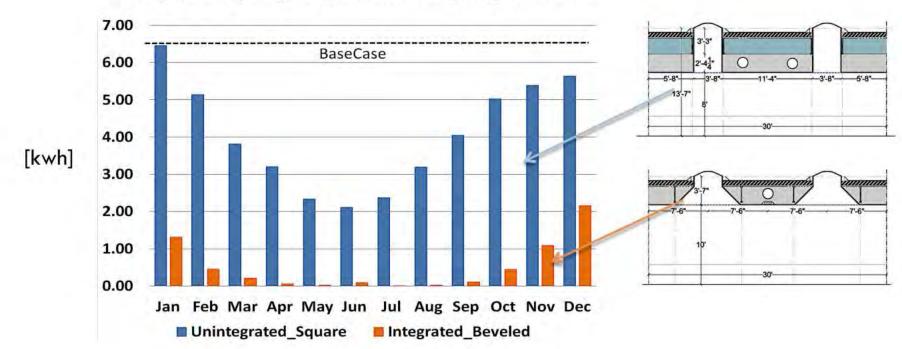
5. Result Analysis

Daylight Illuminance Distribution


Roof Monitors 20% AFR

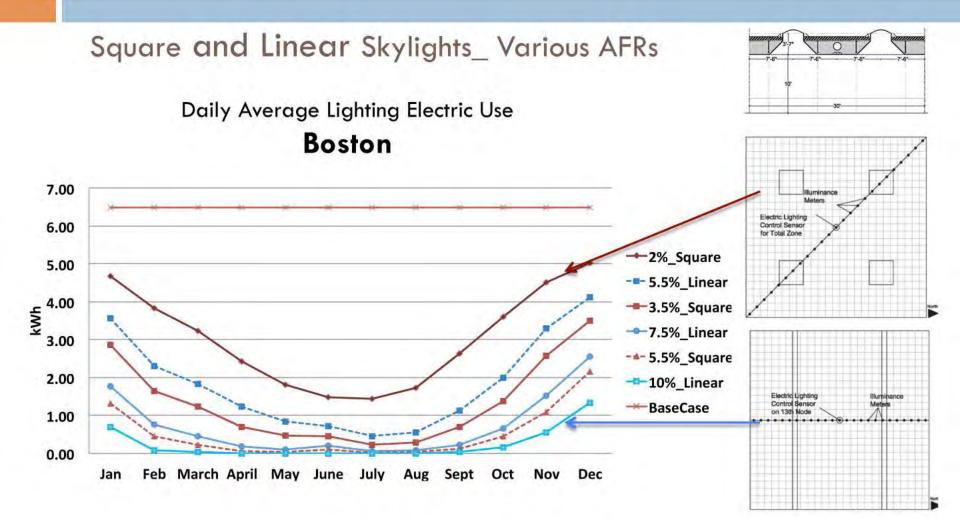
Double Monitors

Boston


5. Results Analysis

5. Result Analysis

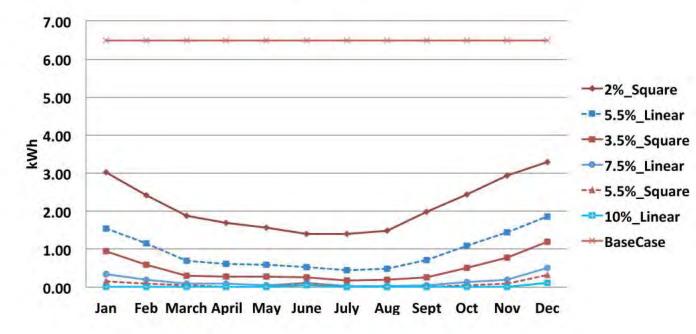
Electric Lighting Consumption

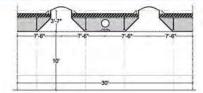

Square Skylights 5.5% AFR

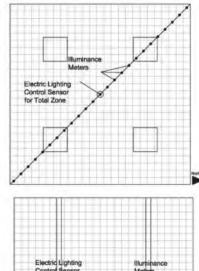
Daily average lighting electric use [kwh] in Boston

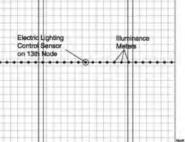
5. Result Analysis

Electric Lighting Consumption

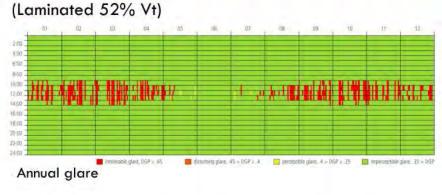



5. Result Analysis


Electric Lighting Consumption


Square and Linear Skylights_ Various AFRs

Daily Average Lighting Electric Use **Miami**



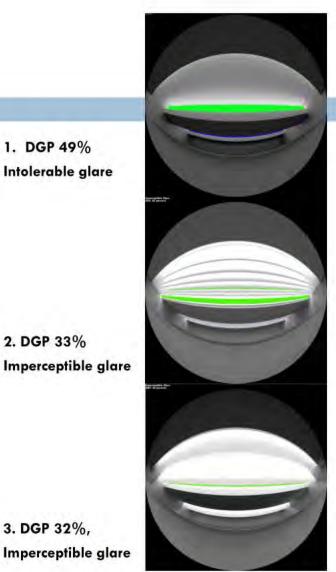
Glare Analysis

1. Single Monitors_25%_Diffuse Glazing for South

2. Single Monitors with Baffles_25%

clear glass with LoE , 90% reflectance in baffles

3. Single Monitor with Banner_25%

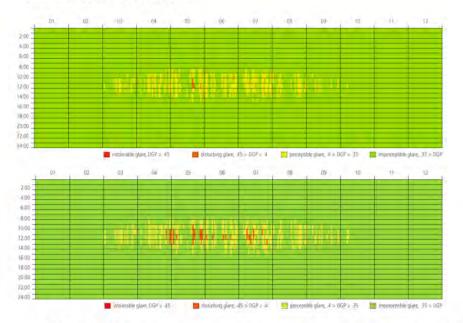

Diffuse Glazing for South (Laminated 52% Vt) with a Banner (white fabric 50% transmittance, 50% reflectance)

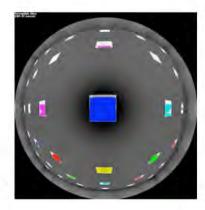
3. DGP 32%, Imperceptible glare

1. DGP 49%

2. DGP 33%

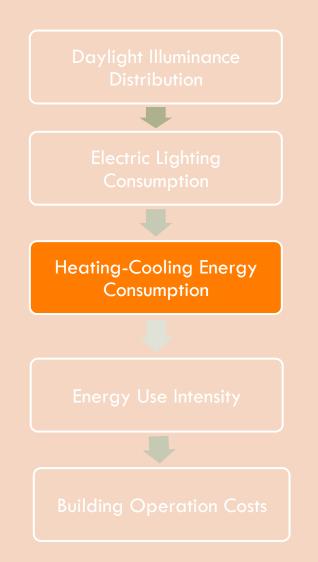
Intolerable glare



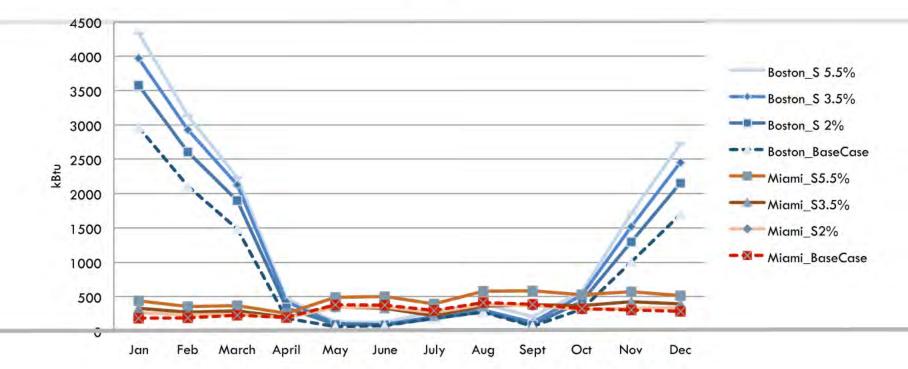

dp	ar	dt	dj	dr	Ir	Iw	st	ps	рj	ab	aa	ad	as	
512	128	0	0	2	4	0.000001	0.15	0	0	3	0.1	2048	512	

Glare Analysis

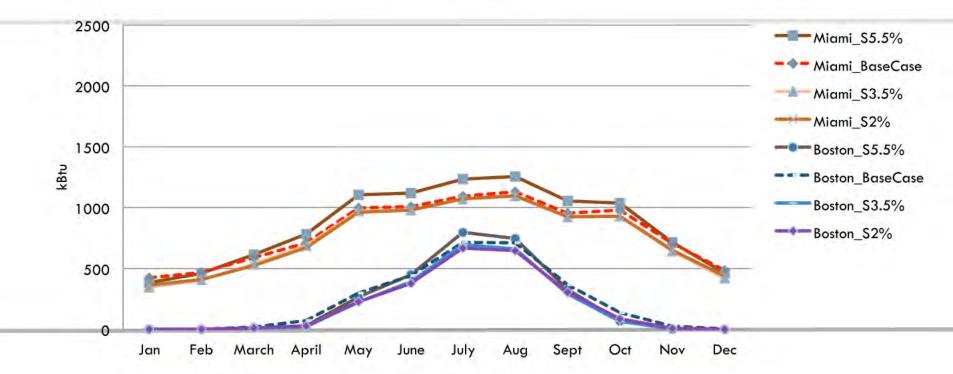
SFR 5.5%_Diffuse 42%Vt


1. DGP=37% Perceptible glare

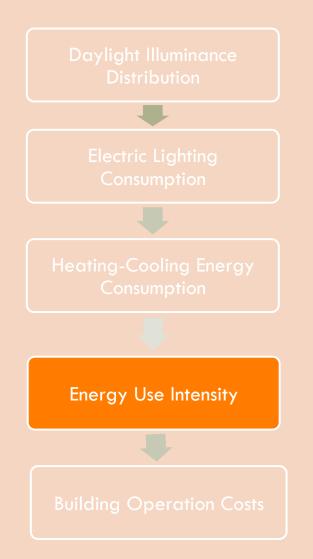
2. DGP=39% Perceptible glare

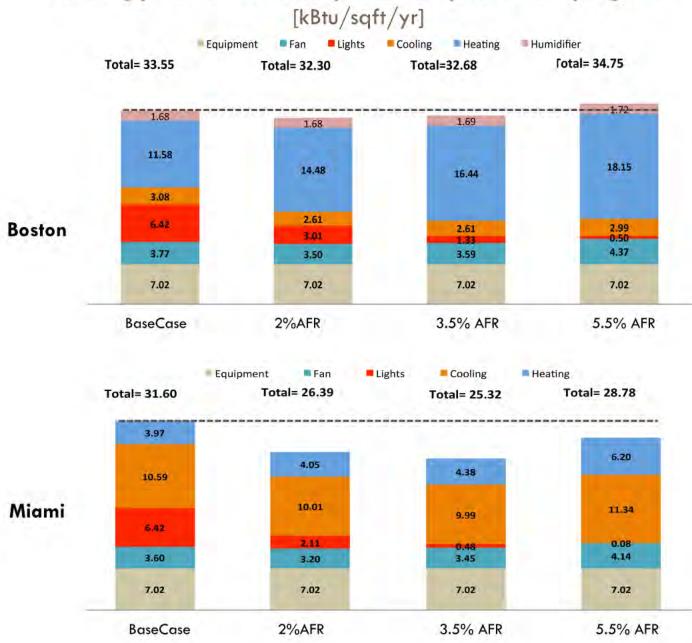

2. Skylights_Integrated Systems with Beveled Lightwell SFR 7%_Diffuse 55% Vt

5. Results Analysis



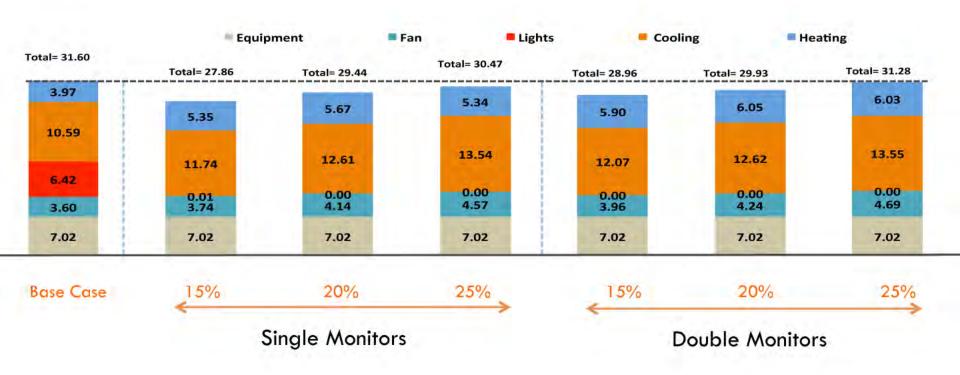
Boston and Miami



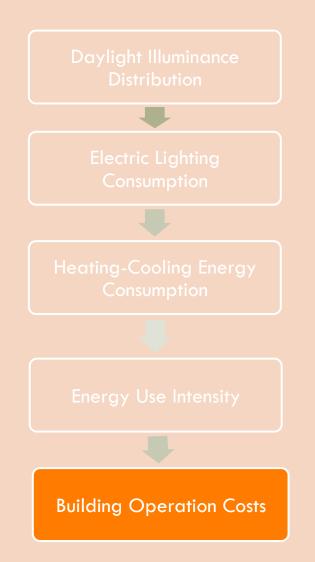


Boston and Miami

5. Results Analysis

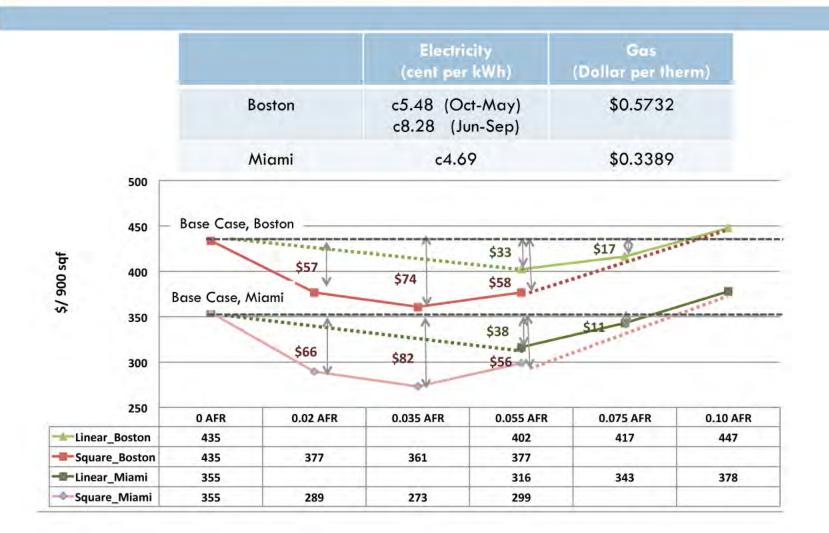


Energy Use Intensity EUI Square Skylights [kBtu/sqft/yr]


Energy Use Intensity EUI Roof Monitors Boston [kBtu/sqft/yr]

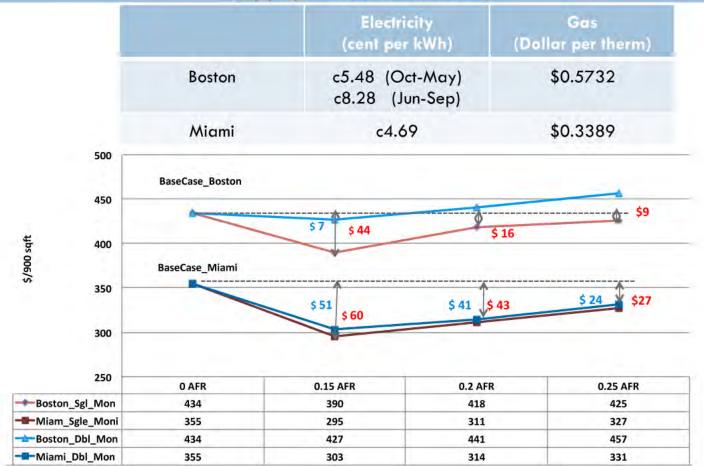
Equipment Fan Lights Cooling Heating Humidifier Total= 44.46 Total= 40.54 Total= 39.88 Total= 45.64 Total= 37.77 Total= 42.84 Total= 33.55 1.81 1.80 1.78 1.79 1.77 1.76 1.68 27.03 26.70 25.52 22.38 22.07 11.58 21.36 3.08 3.53 0.04 3.59 0.04 3.30 3:17 6.42 3:91 6:14 5.73 6.21 5.66 5.72 5.41 4.63 3.77 7.02 7.02 7.02 7.02 7.02 7.02 7.02 **Base Case** 15% 20% 15% 20% 25% 25% **Single Monitors Double Monitors**

Energy Use Intensity EUI Roof Monitors Miami [kBtu/sqft/yr]

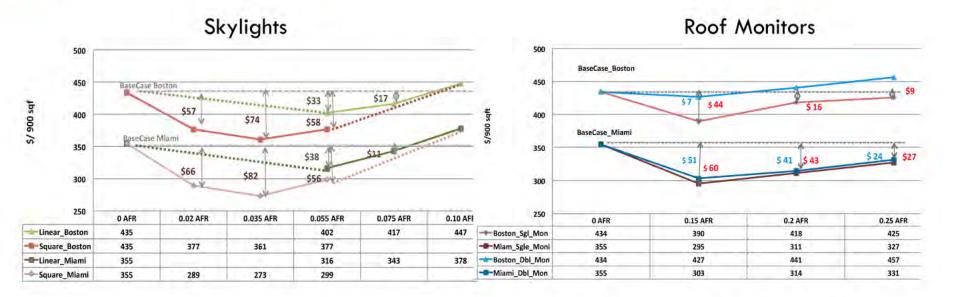


5. Results Analysis

5. Result Analysis


Building Operation Costs

5. Result Analysis


Building Operation Costs in Roof Monitors Boston and Miami

[\$/yr per 900 ft2 module]

6. Conclusions

Comparison and Conclusions

The maximum energy savings in skylights with 3-3.5% AFR

- Higher incident illuminance on the skylights reduces the required area of glazing
- Smaller apertures have thermal advantages

Comparison and Conclusions

- Monitors provide the psychological benefit of less light in the summer when the light tends to be associated with the oppressive heat of the summertime and the psychological benefit of more light in the wintertime, when the lack of sunlight is often a source of depression to people
- Fluctuations in illuminance level in skylight systems can be extreme, causing adaptation issues

Acknowledgement

Thanks to

- My PhD committee
- DIVA group
- OpenStudio group
- Jan Weinold

Question and Answers

Thank you!