Atelier Ten – Daylight Case Studies

Radiance Workshop 2013 Golden, CO

Jessica Zofchak Senior Environmental Designer

ENVIRONMENTAL DESIGN CONSULTANTS + LIGHTING DESIGNERS | atelierten.com

A legacy of positive change

We are an international team of environmental design consultants and lighting designers focused on delivering sustainability to the planned and built environment.

Practice Principles

- Buildings and landscapes do more, systems do less
- Design from first principles
- Integrated design process and solutions
- Pragmatic strategies

Strategy

- Establish sustainability goals early
- Set performance targets
- Develop and test design strategies
- Select technologies to support strategies
- Monitor progress against benchmarks

Services

- Environmental Design
- Energy Analysis
- Lighting Design
- Masterplanning
- Benchmarking
- Carbon Management
- Façade Optimization

High Performance Facades

Case Studies

- Façade optimization using DIVA for Rhino and Grasshopper
- Daylight design for vegetation

Façade Optimization – MSKCC/CUNY

Urban Context Façade Optimization

Project Team:

Architect: Ennead Architects Envelope Consultant: Heintges Environmental Consultant: Atelier Ten Mechanical Engineer: JB&B

Overshadowing

South Facade

SETBACK IS MORE SHADED: SUMMER SUN FROM 10AM-2PM; -SPRING, FALL, WINTER SUN FROM 8:30AM-1PM

LOWER SOUTH FACADE -IS FULLY SHADED THROUGHOUT THE YEAR

1. CUNY UPPER SOUTH FACADE (LABS) SUMMER: SUN AFTER 10AM SPRING/FALL: SUN FROM 9-10AM, 11AM-3PM WINTER: SUN FROM 7-9AM, 11AM-1PM, 2-4PM

2. CUNY LOWER SOUTH FACADE (OFFICES) SUMMER: SUN FROM 10-11AM, 11:30AM-2PM WINTER: SUN FROM 7-9AM, 11:30AM-1PM

 MSK MID-WEST SOUTH FACADE SUMMER: SHADE FOR 1 HR AROUND NOON SPRING/FALL: SUN FROM 8-10AM, 1-4PM WINTER: SUN BEFORE 11AM AND AFTER 3PM

5. MSK MID-EAST SOUTH FACADE SUMMER: SUN FROM 9AM-12PM SPRING/FALL: SUN FROM 8AM-12:30PM WINTER: SUN UNTIL 1PM

3. MSK UPPER SOUTH FACADE SUMMER: SUN ALL DAY SPRING/FALL/WINTER: SUN UNTIL 12:30PM

SUMMER: SUN FROM 10:30-11:30AM, 2-4PM SPRING/FALL: SUN FROM 9-11AM, 3-5PM WINTER: SUN UNTL 11AM

East Facade

EAST ELEVATION

EAST FACADE OVERSHADOWING SUMMER: SUN UNTIL 1PM WINTER: SUN UNTIL 2PM

Solar Insolation Bands (100 kWh/m2 increments)

SOUTH AND EAST FACADE SOLAR RADIATION ZONES

NORTH AND WEST FACADE SOLAR RADIATION ZONES

Curtain Wall System

NILE A 0-Mooure C Mooure D

RENDERING OF MODULES - SYSTEM 1A-V55

Glass lite widths:

1'-6"

3'-0"

4'-6"

DEPLOYMENT OF VARIOUS PANEL WIDTHS ACROSS A MODULE - SYSTEM 1A-V55

External Shading Studies

GLAZING PANEL ANALYZED (PLAN VIEW)

800-900 kWh/m2

Right Fin Depth

600	0-700_	Left Fin Depth											
kWh,	^{/m2} 3	0 Inch	6 Inch	12 Inch	18 Inch								
epth	0 Inch	636	607	592	574								
Fin D(6 Inch	612	600	574	552								
Right F	12 Inch	621	588	571	549								

70	0-800	Left Fin Depth											
kWh	/m2 👍	0 Inch	6 Inch	12 Inch	18 Inch								
epth	0 Inch	726	651	606	554								
Fin D	6 Inch	705	619	567	524								
Right	12 Inch	665	595	552	503								

-900		Left F	in Depth		60	0-700
^{m2} 1	0 Inch	6 Inch	12 Inch	18 Inch	kWh	/m2 5
0 Inch	823	783	746	706	apth	0 Inch
6 Inch	812	771	724	689	Fin De	6 Inch
12 Inch	812	757	714	679	Right	12 Inch

60	0-700	Left Fin Depth											
kWh	/m2 5	0 Inch	6 Inch	12 Inch	18 Inch								
epth	0 Inch	601	555	492	450								
Ein D	6 Inch	570	525	459	417								
Right	12 Inch	547	507	443	400								

RECOMMENDED VERTICAL FIN DEPTH COMBINATIONS FOR LEFT AND RIGHT FINS

Vertical Fin Application Diagram

Current Fin Design (12", 6" Fin Depth)

Annual Incident Solar Radiation Analysis

Proposed Fin Design (13.5", 10", 6", 4" Fin Depth)

Grasshopper Process – Radiation Analysis

A	в	L.	U	t	F.	6	н	1	ј к	L	101	N	0	۲	uк	3		U	v	w	*	Y Z	AA	AB	AC AU	AE	AF A	3 AF		AJ	AK	AL /	4M /	AN I	AU AF	AU	AR	AS.	AI
		Key 1								-	-	_	-	-	_	-	-		-	_	-	_	-					-	-	-	-	_	-	-	_	-	-	-	_
Location	Area	No Fin	Org Fin	A10 Fin	Change 1	Change 2	% Change 1A	% Change 18	3 1A			1B			10				LD			2A			2B			20			2	D			3A				3B
-149.2244	3.22	639	636	637	-1	3	-0.47%	-0.31%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0 63	9 637	-1	1 3	0
-149.2244	12.72	645	637	644	-7	8	-1.24%	-0.16%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 645	644	-7	8 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0	1 0	0 0	0
9, -77.448	\$ 24.08	677	550	562	-12	127	-18.76%	-16.99%	677 562	-1	2 127	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0	0 0	0	0	0	0	0	0 0	1 0	0 0	0
-77.4483	7 6.10	700	578	575	3	122	-17.43%	-17.86%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0) (0 0	700
-148.3898	3.74	548	543	631	-88	5	-0.91%	15.15%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0	0 0	0	0	0	0	0	0 0	1 0	0 0	0
-148.7534	0.07	596	575	604	-29	21	-3.52%	1.34%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0) 0	0 0	0
-147.2125	5. 7.74	622	440	585	-145	182	-29.26%	-5.95%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0 62	2 585	-145	\$ 182	0
-145.2102	2 3.74	618	458	481	-23	160	-25.89%	-22.17%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0 61	8 481	-23	\$ 160	0
l, -148.38	\$ 14.78	624	542	582	-40	82	-13.14%	-6.73%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 624	582	-40	82 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0	0 0	0 0	0
5, -148.75	3 0.30	588	578	589	-11	10	-1.70%	0.17%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0	0	0 0	0
7, -147.21	2 30.54	628	443	552	-109	185	-29.46%	-12.10%	628 552	-10	9 185	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0) (0 0	0
5, -145.21	C 14.78	626	469	470	-1	157	-25.08%	-24.92%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 626	470	-1	157 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0	0	0 0	0
-109.5101	3.74	410	382	417	-35	28	-6.83%	1.71%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0) (0 0	0
-106.3305	5 3.74	432	399	427	-28	33	-7.64%	-1.16%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0	0	0 0	0
-108.3329	9.7.74	529	438	523	-85	91	-17.20%	-1.13%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0) (0 0	0
-103.5534	7.74	495	451	481	-30	44	-8.89%	-2.83%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0	0	0 0	0
-100.7763	3.74	493	389	494	-105	104	-21.10%	0.20%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0) (0 0	0
-98.4017	1 3.74	480	398	482	-84	82	-17.08%	0.42%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0	0 0	0	0	0	0	0	0 0	0	0 0	0
-97.22445	5 7.74	559	482	553	-71	77	-13.77%	-1.07%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0	0 0	0 0	0
63,-14.173	3 27.78	787	761	722	39	26	-3.30%	-8.26%	0 0		0 0	787	722	39	26	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 0	0 0	0	0	0	0	0	0 0	0 0	0 0	0
7 -14.1732	5 7.04	762	767	714	53	-5	0.66%	-6.30%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 (0 0	0	0	0	0	0	0 0	0	0 0	762
6, -15.994	13.60	766	724	686	38	42	-5.48%	-10.44%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 766	686	38 4	2 1	0	0 0	0	0	0	0	0	0 0	0	0 0	0
9 -15.9944	3.44	737	709	687	22	28	-3.80%	-6.78%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0	0	0 0	737
12, -18.530	27.78	759	688	688	0	71	-9.35%	-9.35%	0 0		0 0	759	688	0	71	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 0	0 0	0	0	0	0	0	0 0	0	0 0	0
1 -18.5301	0 7.04	726	697	698	-1	29	-3.99%	-3.86%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 (0 0	0	0	0	0	0	0 0	0	0 0	726
28, -20.703	5 7.04	761	683	677	6	78	-10.25%	-11.04%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 0	0 0	0	0	0	0	0	0 0	0	0 0	761
393, -20.70	27.78	755	687	673	14	68	-9.01%	-10.86%	0 0		0 0	755	673	14	68	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 (0 0	0	0	0	0	0	0 0	0 0	0 0	0
6, -24.315	5 27.78	806	729	720	9	77	-9.55%	-10.67%	0 0		0 0	0	0	0	0 80	6 72	0 9	77	0	0	0	0 0	0	0	0 0	0	0	0 (0 0	0 0	0	0	0	0	0	0 0	0	0 0	0
5 -24.3157	E 7.04	774	724	706	18	50	-6.46%	-8.79%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 (0 0	0	0	0	0	0	0 0	0 0	0 0	774
2, -26.136	\$ 13.60	795	728	706	22	67	-8.43%	-11.19%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 795	706	22 6	7 (0 (0 0	0	0	0	0	0	0 0	0	0 0	0
7-26.13698	3.44	798	712	694	18	86	-10.78%	-13.03%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 0	0 0	0	0	0	0	0	0 0	0 0	0 0	798
81, -9.101	\$ 27.78	777	753	734	19	24	-3.09%	-5.53%	0 0		0 0	777	734	19	24	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 (0 0	0	0	0	0	0	0 0	0	0 0	0
9, -9.10199	8 7.04	768	743	717	26	25	-3.26%	-6.64%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 0	0 0	0	0	0	0	0	0 0	0 0	0 0	768
64, -10.92	3 13.60	795	699	676	23	96	-12.08%	-14.97%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 795	676	23 5	6 (0 (0 0	0	0	0	0	0	0 0	0	0 0	0
1,-10.9232	3.44	804	695	666	29	109	-13.56%	-17.16%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 0	0 0	0	0	0	0	0	0 0	0 0	0 0	0
2 7, -53.688	15.57	186	154	185	-31	32	-17.20%	-0.54%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 (0 (0 0	0	0	0	0	0	0 0) (0 0	0
-53.6886	€ 3.94	199	164	190	-26	35	-17.59%	-4.52%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 0	0	0	0 0	0 0	0 0	0	0	0	0	0	0 0	0 0	0 0	0
9, -52.956	5 13.60	704	501	457	44	203	-28.84%	-35.09%	0 0		0 0	0	0	0	0	0	0 0	0	0	0	0	0 0	0	0	0 704	457	44 20	3 (0 (0 0	0	0	0	0	0	0 0) (0 0	0
												_		_	_					_			-				_												

- A10 Radiation Component
- •Standard component introduced before
- •Different visual output options
- •Excel output options

- Excel Post processing
- •Takes input from Grasshopper
- •Allows additional post processing abilities
- •Formats data in our standard layout

Grasshopper Process – Fin deployment

•Radiation data

•Fins

•Fin chart

Output location Grouping of existing fins Output processing Grouping of fins based on solar radiation analysis

Output Fins in different layers according to radiation bands

Baseline – Recommendation Comparison Analysis with recommended fin depth

VIEW FROM SOUTH EAST

Incident Solar Radiation	Adjacent Glass Width										
received by panel	< 2'-0"	2'-0" - 4'-0"	>4'-0'								
> 900	12"	15°	15"								
750 - 899	9"	12"	15"								
600 - 749	9"	12"	15"								
450 - 599	6"	9"	12"								
< 450	6"	6"	9°								

VIEW FROM NORT

Baseline – Recommendation Comparison

Analysis with recommended fin depth

Fin Optimization Summary Vertical Fin Options Tested

GLASS PANEL WIDTH PER BASELINE SOLAR RADIATION RANGES

Daylight Analysis & Fin Depth East Facade

EX RN DEPTH

Daylight Analysis & Fin Depth South Facade

MSKCC- 12TH FLOOR SOUTH, WITH FINS

CUNY, FLOOR 3, SOUTH FACADE

Façade Optimization - Designing for Vegetation

Marina Bay - 2006

The Esplanade Theatres on the Bay

Michael Wilford + DP Architects

Design Criteria – Temperature, Humidity + Light

Cool Dry Biome Design Criteria

Daylight Levels

45,000Lux for more hours per annum than Eden

Air Temperatures

Daytime Condition – 250C** @ 60% RH Night-time Condition – 170C @ 80% RH Ignition Condition – 130C @ 80% RH

Cool Dry Biome

Cool Moist Biome Design Criteria

Daylight Levels 45,000Lux For More Hours Than Eden

Air Temperatures

Daytime Condition – 25oC @ 80% RH + Night-time Condition – 17oC @ 80% RH + Ignition Condition – 16oC @ 80% RH +

Cool Moist Biome

The Biomes at Eden

Grimshaw 2000

Annual Global Luminance Levels for Plants

Greenhouse Conditions

Psychrometric Chart

Location : Singapore IWEC

Daylight Levels 45,000Lux for more hours per annum than Eden Project

Climate Analysis

Cloud Cover

Represented as annual percentage of sky vault visible at time

Time of day

Lux levels

Comparing spaces

Internal Illuminance Level (Lux)

Solar Control

Fully Deployed Shades Maintain Internal Light Level below 45kLux Reduce Solar Gain by Approx 90%.

Solar Control

Analysis Grid Hours Above 45Klux Value Range: 0.0 - 1000.0 Hours (c) ECOTECT v6

Modeling Shading

Modelling Shading Impacts

Projected Illumination Levels and frequency for 65% VLT glass

Properties of high performance glass

Heat transmisison

External Shading

External Shading

Solar Control

Internal Illuminance Level (Lux)

Environmental Concept

Return air duct integrated to facade	
Hot air purged to outside via openings in facade	
6 2 4	26
Active shading on exterior of facade.	
opasitis. E tenetet similas. E morable spaque parters	
Cooled air + fabric cooling integrated to planting areas	10
Air intake	
centre / supertrees	
Supply & Extract AHU	
Air supply bulkheads	
Underfloor supply duct	
Fabric cooling	0.1/0.0
Displacement grilles at regular intervals	Cool / Dry Biome
Motorised mounted impulse fans to	

Conditioning Strategy

- O Diffuser behind architectural finish
- O Displacement air supply via vertical surface

The Cloud Forest

- Hot air Purged to outside via openings in facade. Space is always positively pressurised
- Active shading on exterior of facade. Self-furling shades
- 8 Air volume equivalent to fresh air rate purged through facade at high level
- Return air duct integrated to mountain
- 6 Air distribution via ring ducts at each level to set diffusers pointing inwards and pointing outwards
- 6 No conditioning to walkways. Misters are on underside of walkway Internal misters can be used to assist shade on very bright days
- Misting nozzles distributed throughout surface of space
- 8 Air intake
- Ground air handling plant room Supply and extract AHU's dehumidification unit
- 1 Tunnel beneath building connecting air handling plant room plant room to core of mountain
- Block box internal spaces conditined with fancoil
- 1 Air distribution and fabric cooling integrated to planter and walkway areas

Gardens by the Bay, Singapore

Grant Associates and Wilkinson Eyre Architects

Marina South Eco-System

ENVIRONMENTAL DESIGN CONSULTANTS + LIGHTING DESIGNERS | atelierten.com

ENVIRONMENTAL DESIGN CONSULTANTS + LIGHTING DESIGNERS | atelierten.com

The Energy Centre

Gardens By The Bay Annual Carbon Evaluation

New York

111111

45 East 20th Street, 4th Floor New York NY 10003 T +1 (212) 254 4500

ENVIRONMENTAL DESIGN CONSULTANTS + LIGHTING DESIGNERS | atelierten.com