

INTEGRATED DAY- AND ARTIFICIAL LIGHT

David Geisler-Moroder

12th International Radiance Workshop National Renewable Energy Laboratory, Golden, Colorado

Aug 13, 2013

MOTIVATION

Frankfurt airport, Aug 8, 2013, 13:00 CEST

Aug 13, 2013 / DGM

12th International Radiance Workshop

MOTIVATION

Philadelphia airport, Aug 8, 2013, 18:15 EDT

PROJECT OVERVIEW

PROJECT CONSORTIUM

Bartenbach LichtLabor GmbH

Zumtobel Lighting GmbH

Tridonic GmbH & Co KG

HANS HÖLLWART -Forschungszentrum für integrales Bauwesen AG

University of Innsbruck

Competence Center Light

Bartenbach L'chtLabor

Bartenbach L'chtLabor

relevant – and conflicting – criteria:

- *i. amount of daylight* guide daylight into the depth of the building
- *ii. daylight distribution* properly distribute daylight throughout the adjacent rooms
- *iii. thermal properties*shade solar heat in summer,provide solar gains in winter
- *iv. glare protection* provide visual comfort
- v. view to the outside

allow a good contact to the outside

patented daylighting system "Daytec lamella":

- highly specular material
- concave shape
- 2 types
 - non-perforated
 - 50% elliptically perforated with film applied on back side
- side-mounted

Bartenbach L'chtLabor

Bartenbach L'chtLabor

thermal characterization

full angular dependent SHGCs from:

- SHGC measurement of selected angles
- simulation/measurement of directhemispherical transmission
- inter- and extrapolation for remaining angels based on transmission

Aug 13, 2013 / DGM

12th International Radiance Workshop

genBSDF

(tensor tree BSDF

lighting characterization

BSDF of overall system from:

- simulation of system BSDF with genBSDF
- 2. combination with casement window in WINDOW7

highly specular aluminum, perforated, applied film

apply material BSDF to geometry

genBSDF (Klems basis)

lighting characterization

BSDF of overall system from:

- 1. simulation of system BSDF with genBSDF
- 2. combination with casement window in WINDOW7

W	WINDOW7													
ID #: 116 Name: P01_DaytecPERF_00deg														
	# Layers: 5 + Tilt: 90 * IG Height: 1000.00 mm									~///		88	8	
	Environmental CEN IG Width: 1000.00 mm									8//>		88	\otimes	
Comment: P01 perforated Daytec lamella in casement window										~~///	1///// 2	ः २ ४	<>: • 5	
Overall thickness: 131.266 mm Mode: #														
			ID	Name	Mode	Thick	Flip	Tsol	Rsol1	Rsol2	Tvis	Rvis1	Rvis2	
•	Glass 1	**	11527	ExtraClear8.gre	#	7.7		0.827	0.076	0.075	0.893	0.083	0.083	
	Gap 1	ÞÞ	1	Air		15.0								
•	Shade 2	**	20037	FluegLamPERF_00deg		50.0								
	Gap 2	ÞÞ	1	Air		11.0								
•	Glass 3	**	11686	CG_Premium6.gre	#	5.8	×	0.561	0.272	0.326	0.863	0.067	0.049	
	Gap 3	ÞÞ	9	Air (10%) / Argon (90%) I		16.0								
•	Glass 4	••	11524	ExtraClear4.gre	#	3.8		0.870	0.079	0.079	0.904	0.084	0.084	

approach

CONTROL STRATEGY

approach

simulation

adapted daylight coefficient approach

for each system position (tilt angle):

- 1 DC for sky (upper quarter-sphere)
- 1 DC for ground (lower quarter-sphere)

12th International Radiance Workshop

- 1387 DCs for sun (façade-based Cartesian grid 5°/5°)
- \rightarrow 3-phase-DC method

- Klems BSDF for daylighting system
- Reinhart sky subdivision (2305)

MONITORING

Bartenbach L'chtLabor

monitored values

light

- luminances
- illuminances
- color temperature
- spectrum

thermal

- temperatures
- humidity
- wind speed
- heating / cooling loads
- U-value
- SHGC

MONITORING

illuminances

- from luxmeter
- from HDR (diffuse reference surfaces \rightarrow E = L* π/ρ)

luminances

• from HDR (*pcomb, pvalue, total* and *psign* are your friends =))

example: july 26, 2013, 13:00 (all system parts closed)

measured illuminance on workplane: 238 lx (sensor); 235 lx / 209 lx (HDR) measured illuminance in depth of room: 91 lx (sensor)

CURRENT AND FUTURE WORK

bug fixing

- under-estimation of illuminances
 - daylight sensor \rightarrow vertical illuminance on façade?
 - vertical illuminance on façade \rightarrow interior illuminances?

further work

- monitoring & evaluation
- generalization possibilities to arbitrary rooms (without Radiance simulation)?

Q & A

contact: david.geisler-moroder@bartenbach.com