Glare analysis and metrics

Introduction into daylight glare evaluation Introduction into evalglare and exercises

Jan Wienold,

Fraunhofer-Institut für Solare Energiesysteme ISE

Content

Introduction

- Existing glare metrics
- Methodology to evaluate glare metrics
- Evaluation of existing glare metrics
- The daylight glare probability DGP
- Low light correction of the DGP
- Age influence on the DGP
- Evalglare introduction

Roman Source: www.readme.c

Elias Canetti

Die Blendung

12

1 T T TT

h f

TIL

EIN. ER

1947

0

000000000

100 00

Discomfort glare

- Discomfort = Subjective rating
- In most cases below disability glare

 Possible scaling: imperceptible perceptible disturbing intolerable

⇒ Indirect consequences (headaches, getting fatigue), often not direct measurable

Content

Introduction

- Existing glare metrics
- Methodology to evaluate glare metrics
- Evaluation of existing glare metrics
- The daylight glare probability DGP
- Low light correction of the DGP
- Age influence on the DGP
- Evalglare introduction

Daylight glare metrics – up to now

Principal structure of existing complex glare formulas:

Daylight glare metrics – Daylight glare index DGI

$$G = f\left(\frac{L_s^{a_1} \cdot \omega_s^{a_2}}{L_b^{a_3} \cdot P^{a_4}}\right)$$

$$DGI = 10\log_{10} 0.48 \sum_{i=1}^{n} \frac{L_s^{1.6} \cdot \Omega_s^{0.8}}{L_b + 0.07 \,\omega_s^{0.5} L_s}$$

- L_s: Luminance of source
- ω_s : Solid angle of source
- L_b : Background luminance \Rightarrow adaptation luminance
- P: Position index

Developed with less than 10 subjects

Content

Introduction

- Existing glare metrics
- Methodology to evaluate glare metrics
- Evaluation of existing glare metrics
- The daylight glare probability DGP
- Low light correction of the DGP
- Age influence on the DGP
- Evalglare introduction

User Assessments: 2 sites (D,DK), 3 window sizes, 3

Tested three shading devices

White Venetian blinds 80mm, convex, ρ =.84 D (sunny), DK (sunny)

Specular Venetian blinds 80mm, concave, ρ =.95 D (sunny) ,DK (cloudy)

Vertical foil lamellas τ=0.02 D (sunny)

Vertical illuminance sensor at eye level

in

0

Luminance camera with fish eye lens

0

6

0

Content

- Introduction
- Existing glare metrics
- Methodology to evaluate glare metrics
 - Evaluation of existing glare metrics
- The daylight glare probability DGP
- Low light correction of the DGP
- Age influence on the DGP
- Evalglare introduction

Evaluation of existing glare metrics

All metrics are compared to the percentage of persons disturbed

Result: Daylight glare index versus percentage of persons disturbed

Result: Average window luminance versus percentage of persons disturbed

Result: vertical eye illuminance versus percentage of persons disturbed

Content

Introduction

- Existing glare metrics
- Methodology to evaluate glare metrics
- Evaluation of existing glare metrics

The daylight glare probability DGP

- Low light correction of the DGP
- Age influence on the DGP
- Evalglare introduction

Idea for the development of the DGP

Use recent findings (Knoop, Osterhaus): Vertical Eye illuminance

and (!!)

Parts of CIE-glare index (or UGR)

Luminance of source Solid angle of source Background luminance of

Position index Direct vertical illuminance Indirect vertical illuminance

Adaptation level in equation?

$$G = f \begin{pmatrix} L_s^{a_1} \cdot \omega_s^{a_2} \\ L_b^{a_3} P^{a_4} \end{pmatrix}$$

Large glare source

 L_b ?

Better correlations when using E_v

Daylight glare probability DGP

$$DGP = c_1 \cdot E_v + c_2 \cdot \log(1 + \sum_{i} \frac{L_{s,i}^2 \cdot \omega_{s,i}}{E_v^{a_1} \cdot P_i^2}) + c_3$$

Combination of the vertical eye illuminance with modified glare index formula

E_{v} : vertical Eye illuminance [lux]	$c_1 = 5.87 \cdot 10^{-5}$
--	----------------------------

$$L_s$$
: Luminance of source [cd/m²]

 ω_s : solid angle of source [-]

P: Position index [-]

 $c_1 = 5.87 \cdot 10$ $c_2 = 9.18 \cdot 10^{-2}$ $c_3 = 0.16$ $a_1 = 1.87$

Correlation between DGP and probability of persons disturbed

Validation of the DGP model against additional data

Low light correction

- Problem: DGP is not defined for values smaller than 0.2 or Ev < 320 |ux!!
- correction factor for "low light" scenes
- advantage: existing DGP equation is not changed, but usability range extended
- based on user assessments
- s-Curve between 0-300 lux Ev

 $0.024 * E_V - 4$ $DGP_lowlight = DGP - \frac{e^{0.024*E}}{2.000}$

 $1 + e^{-1}$

 $0.024 * E_V$

🖉 Fraunhofer ISE

Low light correction

Age influence

- User assessments with 3 age groups
 15 test persons in age group 20-30
 15 test persons in age group 50-60
 15 test persons in age group 60-70
 - parallel study in 9 office buildings à 15 offices each (done by University Karlsruhe)
 - we found a (weak) improvement of the correlation between user perception and DGP when age is applied to equation
- This was confirmed by the office study (better improvement than in the lab study)

Field study: 9 buildings in Germany

16 offices in each building

Age influence

Results of the test room studies

Each point represent 25 data

Improvement of the correlation is small

0.854 -> 0.865

But

- Statistically significant
- Later proven by field study

Daylight Glare Probability DGP and Age

- Younger subjects accept higher DGP-values than older subjects, improvement by Age-correction
- Linear regression-model, unbalanced panel for DGP_{lowlight}
- R²=0.259
- F=284.0, sample N=824
- RE-model, unbalanced panel for DGP_{lowlight}, viewratio, age
- R²=0.270
- F=274.7, sample N=751

Glare from the window as ...

Evaluation of existing models and development of the DGP - conclusions

- Existing discomfort glare formulas show low correlations with user assessments
- Especially windows luminance and indices based on it show low correlation
- DGP improves the correlation
- DGP validated in a follow up study and field study
- Tool for the glare evaluation developed evalglare

DGP – Ranges?

What is preferred by the users?

What is accepted?

How to evaluate the data climate based?

Acceptance of glare

Evaluation of annual data

Idea:

Use similar method than for thermal comfort [EN 15251, 2007]

 \Rightarrow Define three categories, in those a certain amount of users are satisfied

 \Rightarrow Here: Usage of glare categories from questionnaire

 \Rightarrow A 5% exceedance is allowed

Evaluation of annual data

Basis for the categories: Results of the user assessments Descriptive one-way ANOVA analysis (ANalysis Of VAriance)

	DGP	95%-confide	nce interval
Glare rating	avg	lower limit	upper limit
imperceptible	0.33	0.314	0.352
perceptible	0.38	0.356	0.398
disturbing	0.42	0.39	0.448
intolerable	0.53	0.464	0.59
avg	0.39	0.314	0.352

Suggestion of glare - classes

	Α	В	С
	best class	good class	reasonable class
	95 % of office-time	95 % of office-time	95 % of office-time
	glare weaker than	glare weaker than	glare weaker than
	"imperceptible"	"perceptible "	"disturbing"
DGP limit	≤ 0.35	≤ 0.40	≤ 0.45
Average DGP limit within 5 % band	0.38	0.42	0.53

Evalglare A Radiance based tool for glare evaluation

Introduction

Command line based tool to evaluate glare within a given image, mainly daylit scenes.

Usage (independent on operating system):

evalglare [options] hdr (hdr can be piped also)

- Software needs only the executable file
- Output to "standard output" -> flexible

Evalglare

Primary goal : Detection of glare sources, calculation of glare indices Calculated values:

In total:	Per glare source (only with –d available):
Vertical Illuminance	Position (x,y, position index)
DGP	Size (solid angle)
UGR	Luminance
DGI	Task, background and maximum luminance
VCP	Direct illuminance
CGI	Direction vector
Luminance of all glare sources	
Solid angle of all glare sources	

Evalglare

Primary goal : Detection of glare sources, calculation of glare indices Important features:

Task area detection mode (-t): xy position of centre of task opening angle ω of task

Spot extraction (-y) (nowadays default) "Peaks" of very high luminances can be extracted to an extra glare source

evalglare: examples of glare source detection for different situations

Influence of the -r parameter

-r is a search diameter, for combining glare pixels to a glare source

Merging of "glare areas" to a glare source – How large should be a glare source?

Influence of the -r parameter

DGP 0.6277 0.6274 0.6286 0.67

-> Try out different search radius with your image and visualize!

The evalglare checking picture (-c hdrfile)

Up to now:

- Each found glare source gets a certain color.
- In total 6 colors, the 7th glare source gets the first color again.
- Just a visualization of the glare sources no information about importance
- The color might lead the user think of a significance, but there is none (yet)

What to do if you don't have a fish-eye image?

measure the vertical eye illuminance separately to be accurate

try to catch the main light sources in the image

use:

evalglare –i Ev hdrfile

The -i option enables to provide external illuminance values

Please use the current version!!! (v1.11) Known problems with 0.9x versions

Only ONE problem...

-> View type handling/validity! What is an invalid view ????

It's not a problem of evalglare 0.9x, it's a problem

how the user is handling the hdr image!!!

-> missing view information

-> Images treated by tools (like pcompos)

Then

RADIANCE routines treat view as invalid -> standard view is used <> fish eye!!

Example

Reality: Ev=6125 lux, **DGP=0.52**

e.g. use pcompos -s 1 testpic.pic 0 0

- -> same image
- -> tab added to the view option string in header
- -> indicating invalid view

Apply evalglare (e.g. v0.9f)

Result when providing wrong hdr-header: Ev=780 lux, **DGP =0.23** !!!!!!!!

Version 1.11 is available here:

http://www.ise.fraunhofer.de/radiance

Thanks for your attention!!

