

Using RADIANCE to design a PRISMATIC LIGHT REDIRECTING FENESTRATION

Islam A. Mashaly, Sally I. El-Henawy, Mohamed W. N. Mohamed, Osama N. Mohamed, Ola Galal, Khaled Nassar, and Amr M. E. Safwat

This work was funded by the Science and Technology Fund (STDF) of Egypt under project 2799

Introduction

Outline

s file contains a list of Baffance material descriptions month. If you add manerial to this file. If will be an out to file out to be to be add not the set of the set out to be add to be add

(a) name: concriting_BOPercentReflectance (a) type: contain nt: this is a purely diffuse reflector with a standard r: christoph Reinhart

0.8 0.8 0 0 Bastic Generic_black

Simulation

Comparing w. Tracepro

Workflow for BSDF

Conclusions & Recommendations

Introduction

Light Redirecting Systems

Proposed Application

Light Redirecting Systems

STDF SECTIOR OF SUN PATH NATURALLY ENTERING Light Redirecting Systems EQUIVALENT DENSOR PLAN EFFECTIVE REA ÒE LIGH SUN β 븝 11 OF THE LIGHT WELL OR JRBAN CANYON WELL MFI 품 ОF DEPTH OF Ŧ -E D E D **PROFILE** SENSOR PLAN AT BOTTOM

2014 International RADIANCE Workshop, London, UK, September 1st to 3rd

WIDTH OF THE WELL = W

Light Redirecting Systems

Sally I. El-henawy, Mohamed W. N. Mohamed, Islam A. Mashaly, Osama N. Mohamed, Ola Galal, Iman Taha, Khaled Nassar, And Amr M. E. Safwat, *Illumination Of Dense Urban Areas By Light Redirecting Panels*, Optics Express, Vol. 22, Issue S3, Pp. A895-a907 (2014)

http://dx.doi.org/10.1364/OE. 22.00A895

Objectives

- Develop a step-by-step tutorial as a guide to use BSDF to simulate prismatic panel in a room.
- Design optimized light redirecting system for southern skies.

Workflow

Steps of workflow

Drafting Options

- Drafting the geometry with rhino.
- Other options including text input & grasshopper parametric modification.

MonitorGlass 0 0 9	polygon	MonitorGlass.1	
	0	0.0923076942563	-0.0472499988973
	0	0.0923076942563	-0.0405000001192
	0	0.184615388513	-0.0405000001192
MonitorGlass 0 0 9	polygon	MonitorGlass.2	
-	0	0.184615388513	-0.0337500013411
	0	0.184615388513	-0.0405000001192
	0	0.0923076942563	-0.0405000001192

Grasshopper Parametric modification

Text input using notepad

• Drafting the geometry with Rhino

• Exporting the geometry using DIVA Rhino

- Assign a unique name e.g. "MonitorGlass" to the designed geometry within Diva, so all polygons have the same material name
- Run Visual Simulation to generate the files.
- Add the material description in the material file (full.rad) with a refractive index similar to the pmma material (n=1.4893)

 *.rad file: A text file containing the polygons coordinates in 3D space

File Edit Form	at View	Help		
# obj2rad -m # Rhino	full.ma	p full.obj		
MonitorGlass 0 0 9	polygon	MonitorGlass.1		
	0 0 0	0.184615388513 0.184615388513 0.0923076942563	-0.0405000001192 -0.0472499988973 -0.0472499988973	
MonitorGlass 0 0	polygon	MonitorGlass.1		
5	0 0 0	0.0923076942563 0.0923076942563 0.184615388513	-0.0472499988973 -0.0405000001192 -0.0405000001192	
MonitorGlass 0 0 9	polygon	MonitorGlass.2		
	0 0 0	0.184615388513 0.184615388513 0.0923076942563	-0.0337500013411 -0.0405000001192 -0.0405000001192	
MonitorGlass 0 0 9	polygon	MonitorGlass.2		
-	0000	0.0923076942563 0.0923076942563 0.184615388513	-0.0405000001192 -0.0337500013411 -0.0337500013411	
MonitorGlass 0 0	polygon	MonitorGlass.3		
2	0 0 0	0.184615388513 0.184615388513 0.0923076942563	-0.0270000007004 -0.0337500013411 -0.0337500013411	
				►

I full - Notepad

 Use radiance's genBSDF command to convert the surface geometry into a BSDF function through an *.xml file

G

eometry

S

cattering

Data

Õ

(0)

Workflow for BSDF to surface geometry

xml version="1.0" encoding="UTF-8" ?

<Optical> - <Layer> - <Material> <Name>Name</Name

<!-- File produced by: genBSDF New.rad -->
</windowElementType>System</windowElementType>

<Manufacturer>Manufacturer</Manufacturer>

• The generated xml file contains data about the geometry.

</windowElement xmlns="http://windows.lbl.gov" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://windows.lbl.gov/BSDF-v1.4.xsd"</pre>

2014 International RADIANCE Workshop, London, UK, September 1st to 3rd

Full.xml

$\alpha = 25^{\circ}$

$\alpha = 25^{\circ}$

$\alpha = 35^{\circ}$

 $\alpha = 35^{\circ}$

$\alpha = 45^{\circ}$

$\alpha = 45^{\circ}$

Preparing for Simulation

- Need to consider more than one klem patch, therefore simulation
- Add the BSDF function xml file into the DIVA material file.

void BSDF BSDF_Material 6 0 full.xml **0 0 -1**. 0 0

This file contains a list of Radiance material descriptions and i # material dialogue box. Users can automatically assign Radiance ma # Rhino model. If you add a material to this file, it will appear i # Please note that it is up to you to make sure that the Radiance m # is going to crash otherwise. You are encouraged to make a backup

Schematic Diagram representing reflected and transmitted sides of a **BSDF**

x

G(SD)²

Diva Material

 Saved as a text file in C: \Diva\Daylight

	HIP Same-		* party 1,000	Record Provide and		Laver 03:
Local Disk (C:) DIVA Daylight				- 4 Search Daylight	2	
Burn New folder				🕘 material - Notepad		
				File Edit Format View Help		Layer 04:
Name	Date modified	Туре	Size	0	*	
퉬 example results folder	23-Jun-14 10:46 AM	File folder				Laver 05:
25full	10-Jul-14 10:42 PM	XML Document	417 KB	Void BSDF new42-100 6 0 newbsdf.xml -1 0 0 .		Lujo. co.
🔮 35full	11-Jul-14 5:05 AM	XML Document	380 KB	0		
42dgrees3_1	10-Dec-13 2:54 PM	XML Document	295 KB	0		
📄 blank	20-Sep-10 9:26 PM	RAD File	1 KB	void BSDF new42100		
CIE.Overcast.Sky	02-Jul-10 2:32 PM	RAD File	1 KB			
🖭 Full	01-Jul-14 2:29 PM	XML Document	353 KB	0		
material	19-Jul-14 3:55 PM	RAD File	6 KB	void BSDF_newxml100		
(1) newbsdf	23-Jun-14 2:50 PM	XML Document	846 KB	0 Newxm1.xm1100.		
Newxml	30-Jun-14 12:12 PM	XML Document	204 KB	0		
Newxmlglass	30-Jun-14 12:34 PM	XML Document	194 KB	void BSDF_newxmlglass100		
prismsimulation	19-Jul-14 2:16 PM	XML Document	564 KB	6 0 Newxmlglass.xml 1 0 0 .		
				0 void BSDF 45deg 6 0 full.xml 0 0 -1 . 0 void BSDF 35deg 6 0 35full.xml 0 0 -1 . 0 void BSDF realpanelsine 6 0 prismsimulation.xml 0 -1 0 . 0 void BSDF realpanelsine 6 0 m	• 4	
odified: 19-Jul-14 3:55 PM Date created: Size: 5.42 KB	: 21-Sep-11 9:28 PM					

Assign Materials Assign VA Hide / Show Help Information

Layer Name	Material Choices
Default:	MonitorGlass
Layer 01:	GenericCeiling_80PercentReflectance
Layer 02:	Generic_Diack HighReflectanceCeiling_90PercentReflec GenericFloor_20PercentReflectance
Layer 03:	GenericInteriorWall_50PercentReflectance OutsideFacade_35PercentReflectance OutsideGround_20PercentReflectance
Layer 04:	metal_diffuse SinglePane
Layer 05:	DoublePane_Clear DoublePane_Low_e DoublePane_Low_e_Argon
Su	ImplePane_Kypton Ibmit GenericTranslucentPanel_20PercentTran MonitorScreenImage
	MonitorGlass 42inside010 42inside100
	42inside001 new42-100 new42100
	newxml100 newxmlglass100
	45deg 35deg 25deg
	realpanelsine

Simulations

Room Dimensions

• The selected room is of dimensions 3.5 x 6.0 x 2.8 meters with a wide window of 1.0

meters high

Simulations

 The idea of the simulations is to observe the improvement in light redirected upwards.

Simulations

- Add the BSDF material for the glass part.
- Make sure you add the .xml file in the folder of the model file too.

Prism $\alpha = 25^{\circ}$

Prism $\alpha = 35^{\circ}$

Prism $\alpha = 45^{\circ}$

Simulation Results

Graph showing the percent enhancement on the ceiling illumination (using average of sensor points on the ceiling)

Prism $\alpha = 25^{\circ}$

Prism $\alpha = 35^{\circ}$

Prism $\alpha = 45^{\circ}$

Compare with Tracepro

Light Redirecting Systems

Compared genBSDF results with TracePro and small make shift setup

TracePro Results

TracePro Results

Graphs Show the normalized frequency & average radiation through the year with respect to solar altitude

Weight

Conclusion

In conclusion

- The Prism $\alpha = 35^{\circ}$ showed the optimum design in most solar altitudes -especially high ones- in Egypt.
- A Prism with a different angle can be selected for the redirecting example
- Need validation with the 3-phase method and perhaps the 5phase

Questions??