

An industry perspective on daylight calculations Helle Foldbjerg Rasmussen Technical Support Manager

MicroShade A/S

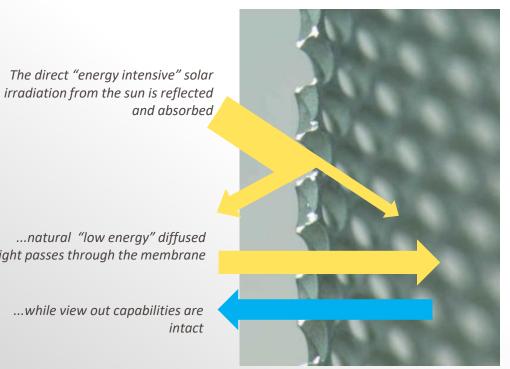
Spin-off from Danish Technology Institute in 2003

- Venture company since 2008
- Commercial for 10 years

Business overview

- Work with the major glass manufactures
- >100 Projects in Europa, start-up in middle east and Australia
- Projects with known architects

Partners


What is MicroShade®

- A high-end solar shading product
- Consisting of a thin (0,175 mm) steel membrane with microlamellas
- Build into the glazing complex fenestration system (CFS)

g-value, summer = 0.10 g-value, winter = 0.35

Stabil and smooth daylight

How does it work?

LT₀ 0.50 $\mathsf{sDA}_{300,50}$ more than 50% Excellent colour rendering, Ra > 96%

Free view out

Always transparent

Removal of direct sunlight

Partial shadow

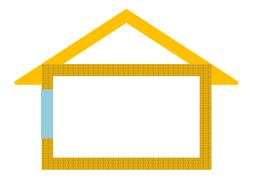
Passive technology

No user interaction Predictable and efficient No maintenance

...natural "low energy" diffused light passes through the membrane

...while view out capabilities are

Progressive g-value


Consequences of the EU EPBD Directive

Typical existing buildings (EU)

- Low level of insulation
- Single or 2-layer glazings
- High air leakage

Typical buildings in existing building codes 2018 (EU)

- High level of insulation
- Low-e glazings (2- or 3-layer)
- Low air leakage
- Solar irradiation needs to be minimized in summer
- Some solar irradiation can be accepted in winter

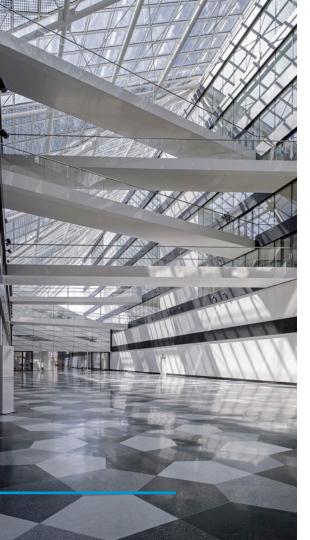
Future buildings (EU) ZEB

- Highly insulated windows
- Increased demand for progressive, movable or switchable solar shadings
- Optimized designs and orientations
- Daylighting

Calculations by the advisors

Typical existing buildings (EU)

- Stationary heat transfer calculations
- No or simple daylight calculations


- Dynamic/climate based energy and indoor climate calculations
- Simple daylight calculations
 - DF
 - WFR

Future buildings (EU) ZEB

- Dynamic/climate based energy and indoor climate calculations
- Climate based daylight calculations
- Coupled indoor climate and daylight calculations based on the same assumptions

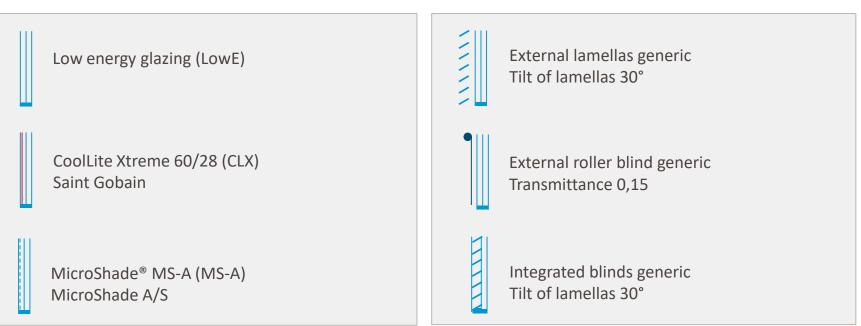
Daylight Legislation & standards

- Demand in the market for CBDM is driven by
 - legislation
 - standards
 - building certification schemes (only high-end)
 - time
- Climate based metrics are moving into legislation and standards, e.g.
 - LEED (sDA)
 - BREEAM (sDA)
 - New EN 17037 Daylight standard (sDA)
 - Danish building regulation (BR18) as already adopted EN17037 before it was voted through

BREEAM[®]

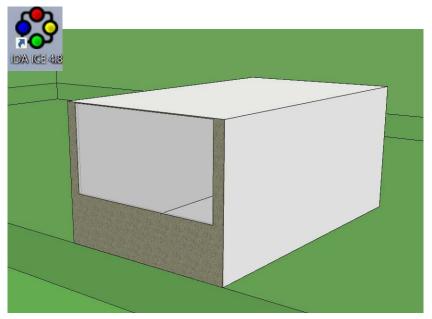
FED

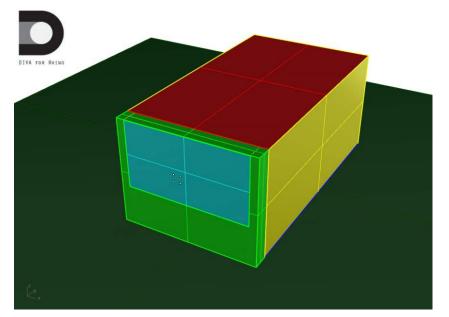
Climate Based Daylight Modelling (CBDM)


- Simulation software for advisors
 - Requires expert skills
 - Radiance parameters are difficult to choose
 - Shading devices are difficult to model
 - Long simulation time
- Need for easy to use and fast simulation software

Example Comparison of facade systems

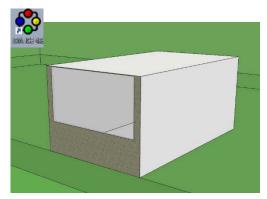
Static shading solutions

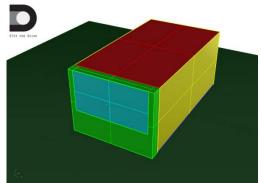

Dynamic shading solutions


Example Choise of software(s)

Indoor climate simulations in IDA ICE

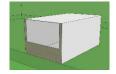
Daylight simulations in DIVA for Rhino

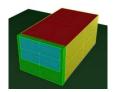

Example Experiences


- Model export was difficult, didn't succeed \rightarrow time consuming
- Building two models were faster (simple model)
- Window and shading description was very different in the two softwares
 - IDA ICE spectral glazing data, generic shadings in library
 - DIVA transmissivity of the glazing, shadings needed to be modelled physically

3 September 2018

- Shading control is done differently in the two software
 - IDA ICE W/m^2 irradiation on the facade
 - DIVA lux level inside the room



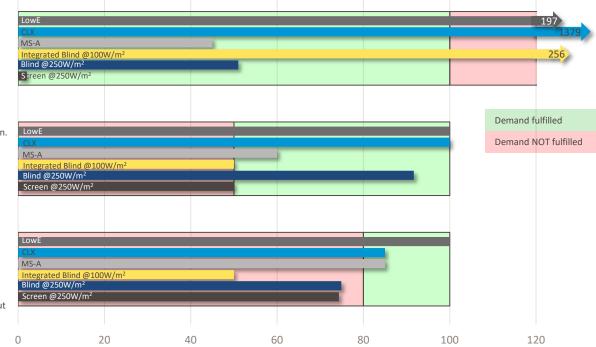

Example Data handling

Thermal Indoor Climate Hours above 26°C

Demand acc. to EN15251 Max. 100 hours >26°C

Daylight

Percentage of area with min. 300 lux in 50% of daylight hours


Demand acc. To EN17037 Min. 50% sDA_{300.50}

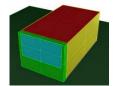
IDA ICE control was used on DIVA raw-data

Weighted View Out

Percentage of workhours with a view out (weighted acc. to EN14501)

Danish guidance: Min. 80% weighted view out

Example Control strategies for dynamic shadings


IDA ICE control was used on DIVA raw-data

Daylight

Percentage of area with min. 300 lux in 50% of daylight hours

Demand acc. To EN17037 Min. 50% sDA_{300 50}

Internal blinds @10	0 W/m²		50				
Blind @250W/m ²							92
Screen @250W/m ²			50				
Internal blinds @150	00 lux				70		
Blind @1500 lux					70		
Screen @1500 lux			48				
0 2	0 4	0	6	0	8	0	10

Daylight

Percentage of area with min. 300 lux in 50% of daylight hours

Demand acc. To EN17037 Min. 50% sDA_{300.50}

DIVA control was used

120

Challenges Combined indoor climate and CBDM

- Very few simulation software are able to do **both** indoor climate and CBDM
 - Model exports are often difficult and time consuming
 - Building two models take twice the time
 - Window and shading description is not shared between software
 - Shading control is not shared between software
 - Weatherdata requires specific format for each software
 - Often two separate advisors are doing indoor climate and daylight/CBDB and assumptions get lost
- Need for simulation software that can do;
 - both indoor climate and daylight/CBDM
 - using the same window and shading description
 - using the same shading control

Conclusions

Designers

- Solar shading <u>must</u> be taken into account when evaluating daylight in future low energy buildings
- The <u>same control of shading</u> must be used in both indoor climate and daylight simulations
- Evaluate the view out with the planned solution

Conclusion Software developers

We need your help to make CBDM easy to use faster combinable with indoor climate simulations