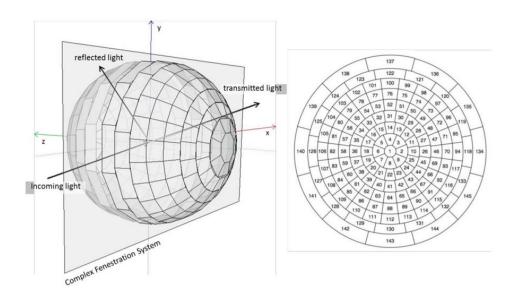
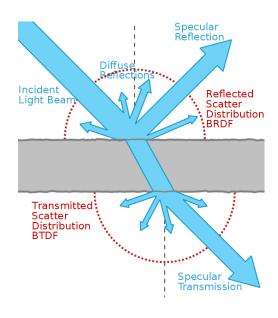


Basic idea


 Shared assumptions: Window definition, geometry, weather data


- Using more up to date methods, than commonly used
- Remove manuel work as much as possible
- Creating the output you need, without further datahandling

Shared assumptions

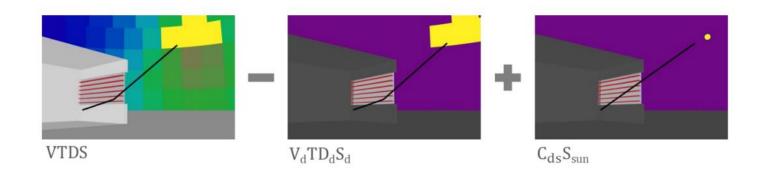
Window definition - BSDF

Shared assumptions

Geometry and weather data

Geometry accordance by only defining it in one place

Weather data from the same source



Radiance – 5 PM

Energy Plus

Construction:ComplexFenestrationState

EnergyPlus Energy Management System

Construction:ComplexFenestrationState

```
Complex Fenestration State
Construction:ComplexFenestrationState,
CFS Window,
                                                      !- name
LBNLWindow,
                                                      !- basis type
                                                     !- basis symmetry type
None,
ThermParam Glz 62,
                                                     !- window thermal model
CFS Glz 62 Basis,
                                                      !- basis matrix name
CFS Glz 62 TfSol,
                                                     !- Tfsol
CFS G1z 62 RbSo1.
                                                     !- Rbsol
CFS Glz 62 Tfvis,
                                                     !- Tfvis
CFS Glz 62 Rbvis,
                                                     !- Rbvis
Glass_21013_Layer,
                                                      !- layer 1 name
CFS Glz 62 Layer 1 fAbs,
                                                     !- fAbs
CFS Glz 62 Layer 1 bAbs,
                                                     !- bAbs
Gap 9 Glz 62 Layer 1,
                                                     !- gap 1 name
Shade 27003 Layer,
                                                      !- layer 2 name
CFS_Glz_62_Layer_2_fAbs,
                                                      !- fAbs
CFS Glz 62 Layer 2 bAbs,
                                                     !- bAbs
Gap 9 Glz 62 Layer 2,
                                                      !- gap 2 name
Glass 21436 Layer,
                                                      !- layer 3 name
CFS_Glz_62_Layer_3_fAbs,
                                                      !- fAbs
CFS_Glz_62_Layer_3_bAbs,
                                                      !- bAbs
Gap 9 Glz 62 Layer 3,
                                                     !- gap 3 name
Glass 21436 Layer.
                                                      !- layer 4 name
CFS Glz 62 Layer 4 fAbs,
                                                      !- fAbs
CFS_Glz_62_Layer_4_bAbs;
                                                      !- bAbs
```



```
Matrix Data
Matrix: Two Dimension,
CFS G1z 62 TfSo1,
145,145,
  10.81615,
               0.00093,
                            0.00130,
                                        0.00139,
                                                    0.00133,
                                                                 0.00093,
                                                                             0.00113,
                                                                                          0.00112,
  0.00137,
               0.00113,
                           0.00108,
                                       0.00110,
                                                   0.00107,
                                                                0.00107,
                                                                            0.00107,
                                                                                         0.00110,
  0.00143.
              0.00126.
                           0.00119.
                                       0.00130.
                                                    0.00106.
                                                                0.00093.
                                                                            0.00097.
                                                                                         0.00102,
    0.00102,
                0.00098,
                            0.00094,
                                         0.00106,
                                                      0.00118,
                                                                  0.00142,
                                                                              0.00168
                                                                                           0.00163,
    0.00120.
                0.00127.
                             0.00136.
                                         0.00125.
                                                      0.00119.
                                                                  0.00116.
                                                                              0.00116.
                                                                                           0.00117.
    0.00169.
                0.00169.
                             0.00167.
                                         0.00168.
                                                      0.00171.
                                                                  0.00165.
                                                                              0.00157.
                                                                                           0.00158.
    0.00142,
                0.00129,
                             0.00126,
                                         0.00124,
                                                      0.00122,
                                                                  0.00120,
                                                                              0.00121,
                                                                                           0.00124,
    0.00169.
                0.00167.
                             0.00169.
                                         0.00172.
                                                      0.00175.
                                                                  0.00179.
                                                                              0.00178.
                                                                                           0.00165.
```

4 September 2018

Interface

Rhino – Grasshopper – Ladybug Tools

Flow of data

Decoupled

Initial data

Engines

<u>Initial output</u>

Data handling

Final output

IGDB (not spectral)

IWEC2

Geometry in IDA ICE

IDA ICE interface

Excel

Energy usage Temperatures

"glass" material

IWEC1

Geometry in Rhino

.CSV

Excel

sDA (EN 17037) UDI

Flow of data

Coupled

Initial data

BSDF

EPW

Geometry in Rhino/Grasshopper

Engines

Data handling and final output

Energy usage Temperatures

sDA (EN 17037) UDI

Flow of data

Coupled ideally

Define

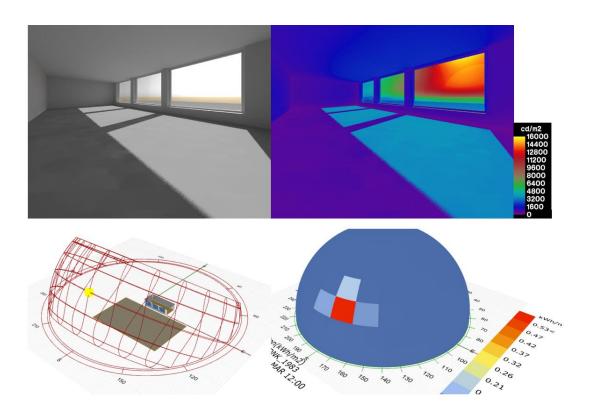
IGU and shading

Location

Geometry

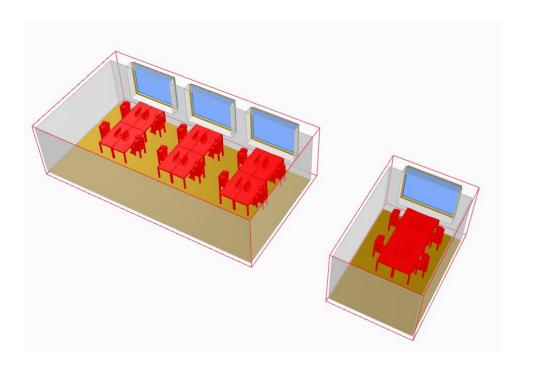
BSDF database (.xml and .idf)

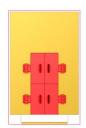
Selecting relevant geomtry faces for you

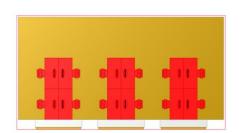

<u>Analyse</u>

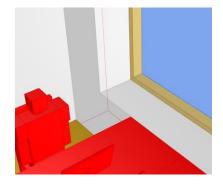
Energy usage Temperatures

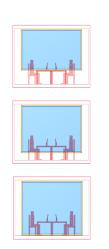
sDA (EN 17037) UDI

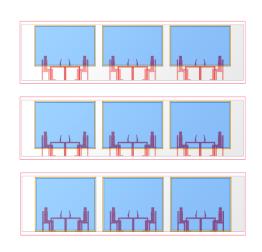

Overview



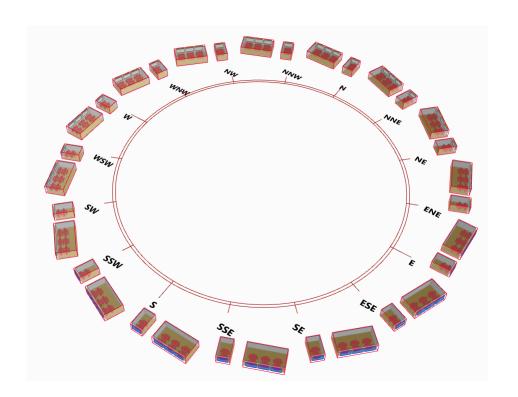


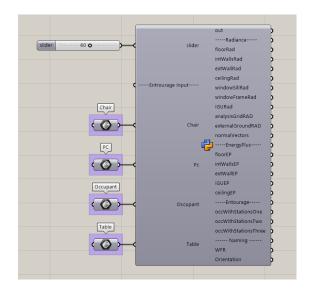

Geometry



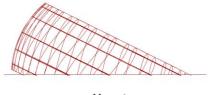


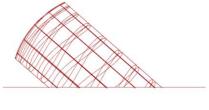
Case study WFR

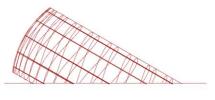


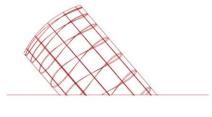


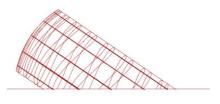
Orientations

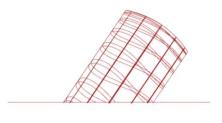







Trondheim


Stuttgart

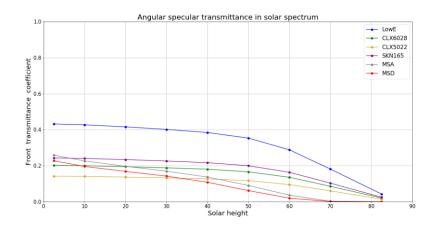

Oslo

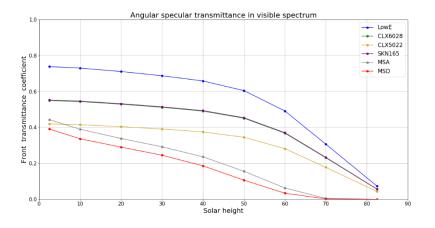
Madrid

Copenhagen

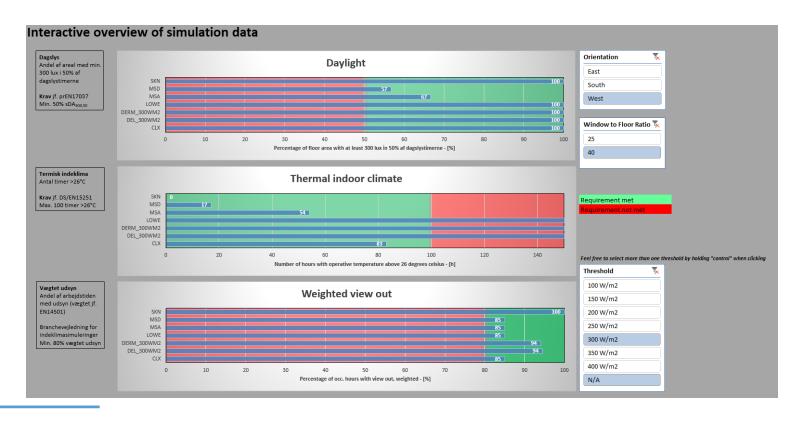
Sydney

Shading systems





Passive shading systems



Presentation layout

Thank you