Visual comfort with side-lit at restaurants under sunny climate

Urtza Uriarte Otazua 2018 International Radiance Workshop: 3-5 September Loughborough University, UK

INDEX

Introduction

Glare simulation: DGP

CBDM simulation: DA

Case study: restaurant

Conclusions

COMPLEX SCENES to achive heterogeneity and dynamism:

- · Light perception and light level
- \cdot Type of planes and transition planes
- **Regulating attention** increasing the efficiency

INTRODUCTION

- \cdot There are some problems to control properly daylight
- \cdot Especially an activity with needs a considerable time.

INTRODUCTION

SIMULATION: DGP / DA CASE STUDY

Visual comfort with side-lit. Urtza Uriarte. 2018 International Radiance Workshop. 3-5 September, Loughborough

LA BARCELONETA

Highly glazed facade
 Located on the seafront
 Placed on the ground floor

Visual comfort with side-lit. Urtza Uriarte. 2018 International Radiance Workshop. 3-5 September, Loughborough

INTRODUCTION

SIMULATION: DGP / DA

CONCLUSIONS

Therefore, according the assessment of restaurants at Barcelona:

- · 56 restaurants were studied in Barcelona (Spain)
- · Almost all cases (93%) have a window with outside views
- · Almost half cases (43%) have highly glazed façade
- · Almost all new or retrofit cases (94%) have highly glazed façade

CASE STUDY

60)

I would continue to test if daylight simulations will be interesting tool for hotel industry and tourism as restaurants to help light designing aspects and to achieve some performance results to prevision the effects of the proposed design

SIMULATION: DGP / DA

INTRODUCTION

· DGP index are calculated by **Evalglare**, tool for performing a glare analysis of a Radiance-based HDR scene.

• This tool needs HDR picture with fisheye projection and incoming illuminance data of the picture.

• DGP works mostly with indoors, especially when; a specific rating of luminance and there is contrast between glare source and background; incoming illuminance is higher than 380 lx; and the sun luminance is calibrated. The used formula for DGP:

 \cdot Where:

Ev, vertical eye illuminance (lux) Ls, luminance of source (cd/m2) ws, solid angle of source (-) P, position index (-) c1= 5.87·10^-5; c2= 9.18·10^-2; c3= 0.16; a1=1.87 · Possible scaling

 $\begin{array}{ll} \mbox{Imperceptible,} & \mbox{DGP} \le 0.35 \ (35\%) \\ \mbox{Perceptible,} & \mbox{0.35} \ (35\%) < \mbox{DGP} \le 0.40 \ (40\%) \\ \mbox{Disturbing,} & \mbox{0.40} \ (40\%) < \mbox{DGP} \le 0.45 \ (45\%) \\ \mbox{Intolerable,} & \mbox{DGP} > 0.45 \ (45\%) \\ \end{array}$

Source: Wienold J.

Visual comfort with side-lit. Urtza Uriarte. 2018 International Radiance Workshop. 3-5 September, Loughborough

• **Doubts** to assess **highly glazed façade** and glaring **outdoor plane contribution**. However, it is considered that outdoor view is relevant as transition plane especially for **attention quality**, as rest and break away.

• We would like to attempt to describe the complex light scene next to highly glazed façade; when you view toward to outdoor what happen with overall scene.

 \cdot So, we have detected **different workplanes** . Usually three relevant workplanes:

- Toward to task "SOURCE" visual field = Work Plane (table)
- · Toward to around "BACKGROUND" visual field = Relation Plane (person)
- · Toward to far "OUT" visual field = Out Plane (window)

 \cdot Mean DGP is calculated by the mean between the DGP of WP 1, WP 2 and WP 3:

 $Mean DGP= ([DGP] _WP1+ [DGP] _WP2+ [DGP] _WP3)/3$

INTRODUCTION

SIMULATION: DGP / DA

Glare simulation: DGP

Depending the **time** and **accuracy of attention** the plane could be different.

Comparison of real photographs and visualisations owing to calibrate the simulation:

Scripts of Evalglare program by Linux Ubuntu 14.04:

To obtain DGP index:

\$ evalglare -i 2350 *res1_wp1_nf.hdr > *res1_wp1_nf.glr

To obtain glare source image:

\$ evalglare -c *res1_wp1_nf_gs.pic *res1_wp1_nf.hdr

\$ ra_tiff *res1_wp1_nf_gs-pfilt.pic *res1_wp1_nf_gs-pfilt.tif

Parameters and Scripts of Point-in-Time glare metric of DIVA for Virtual Restaurant Prototype:

- · Medium Quality
- · Clear Sky with Sun (CIE Clear Sky)
- $\cdot 07 22 11$
- \cdot 180 deg. Fisheye
- · Radiance parameters:

-ps 4 -pt .10 -pj .9 -dj .5 -ds .25 -dt .25 -dc .5 -dr 1 -dp 256 -st .5 -ab 3 aa .2 -ar 256 -ad 2048 -as 1024 -lr 6 -lw .01

For Workplane 1, table => -vu 0.5 0.5 0

- \cdot 800 x 600 image size
- \cdot 100 geometry density

• With *gensky* program, some pictures' incoming illuminance data was different comparing with the measured illuminance.

- · gendaylit program has –E parameter option for Global Horizontal Irradiance (GhI) data.
- The false colour image has been obtained by *wxfalsecolor* program. The parameters of the legend have been (The false colour image parameters of WebHDR for real pictures' have been the same):
 - · 3000 cd/m2 the scale limit
 - \cdot 10 steps
 - · log 3

INTRODUCTION

Source: Ward G., Mardaljevic J, McNeil A.

Visual comfort with side-lit. Urtza Uriarte. 2018 International Radiance Workshop. 3-5 September, Loughborough

CBDM simulation: DA

Parameters and Scripts of DA metric of Three-Phase Method with Complex Fenestration Systems:

· View Matrix:

```
$ rcontrib -f klems_int.cal -b kbinS -bn Nkbins -m windowglow -I+ \
-ab 2 -ad 1000 -lw 2e-5 resProSF_PF_vmx.oct < resProSF_PF.pts > \
resProSF_PF.vmx
```

· Daylight Matrix:

\$ rfluxmtx -v -n 2 -c 20000 -ff -ab 4 -lw 1e-4 -ad 1000 windowNF.rad \
dummysky.rad -w res1NF_material.rad res1NF_geometry.rad > res1NF.dmx

 Transmission Matrix by Chantal Basurto Dávila's PhD as Film3M_145x145_9142012_t.xml and occasionaly WINDOW 7 software:

R <u>a</u> diance																		
			ID	Name	Mode	Thick	Flip	Tsol	Rsol1	Rsol2	Tvis	Rvis1	Rvis2	Tir	E1	E2	Cond	Comment
	-	Glass 1 🕨	102	CLEAR_3.DAT	#	3.0		0.834	0.075	0.075	0.899	0.083	0.083	0.000	0.840	0.840	1.000	

· Sky Matrix:

\$ gendaymtx Barcelona.wea > Barcelona.smx

• Final results with *dctimestep* program:

\$ dctimestep res1NF.vmx SimpleGlass.xml res1NF.dmx Barcelona.smx | rmtxop \
-fa -c 47.4 119.9 11.6 - > res1NF.dat

CBDM simulation: DA

Parameters and Scripts of DA metric of DIVA without CFSs:

- · Occupancy Schedule: hourly, from 11:00 to 17:00 in all year
- · 300 lux target illuminance
- · Radiance parameters:

-ab 2 -ad 1000 -as 20 -ar 300 -aa 0.1

- · 100 geometry density
- \cdot The used settings of visualization map:
 - · Min. Percentage: 0
 - · Max. Percentage: 100

Parameters and Scripts of Point-in-Time illuminance metric of DIVA:

- · Clear Sky with Sun (CIE Clear Sky)
- \cdot 07 22 11 Standard Time
- The same as DA's unit, Radiance parameters, geometry density and visualization map settings

SIMULATION: DGP / DA

CASE STUDY

CONCLUSIONS

For Calibrations 2 real restaurants:

Restaurant 1 (R1), Sal Café

Restaurant 2 (R2), Azurmendi

Virtual Restaurant Prototype (VRP)

SIMULATION: DGP / DA

CASE STUDY

CONCLUSIONS

Nine window systems are proposed:

INTRODUCTION

- \cdot No Frame and No Frame with Prismatic Film CFS
- \cdot Large Frame and Large Frame with Prismatic Film CFS
- \cdot Small Frame and Small Frame with Prismatic Film CFS

The studied façade is orientated to the south.

The virtual module has 2.7m height, 2m large and 5m deep.

There is a table with 0.7m x 0.7m and two chairs of 0.5m x 0.4m.

There is some food on the table and a sit person. Inside there are white high reflecting ceiling, medium reflecting plane grey walls and low reflecting plane grey floor.

Glare results

Visualizations, False Colour Images and Glare Source Images with DGP index of **No Frame (highly glazed façade) WS**; without CFS and with Prismatic Film CFS; WP 1, table down view; WP 2, person front view; WP 3, window out view:

Glare results

Visualizations, False Colour Images and Glare Source Images with DGP index of Large Frame WS; without CFS and with Prismatic Film CFS; WP 1, table down view; WP 2, person front view; WP 3, window out view:

Glare results

Visualizations, False Colour Images and Glare Source Images with DGP index of **Small Frame WS**; without CFS and with Prismatic Film CFS; WP 1, table down view; WP 2, person front view; WP 3, window out view:

Summary Glare results

		DGP)GP						
Façade Systems	Work Plane WP 1	Relation Plane WP 2	Out Plane WP 3	Arithmetic Mean	Geometric Mean				
No Frame (highly glazed)	36	44	80*	53*	50.2*				
Large Frame	31	43	79*	51*	47.2*				
Small Frame + 3M CFS	21	30	51	34	31.8				

* No reliable data

 \cdot The results of Out Plane DGP are high, because the DGP ratings are not calibrate for outdoors. To calculate better the mean of complex scene, it could be interesting to know the real out plane contribution because the tolerance is different.

 \cdot If we knew calculating the Out Plane light comfort conditions in this case the mean glare result would not have to rise much.

• Therefore, perhaps the mean of; highly glazed and large window façade will be close to Disturbing glare; and small window façade will be close to Imperceptible glare.

Summary Glare results

Glare concerns

Possible factors to introduce to type of plane or activity: · Glare ratings

- \cdot Time of attention
- · Accuracy of attention
- \cdot Spatial contrast as

information content

INTRODUCTION

Point-in-Time Illuminance results

Window Systems, 22 July at 12:00 local time

Point-in-Time Illuminance results

			y TPM, 22 July at	at 12:00 local time				
			No F	rame	Small	Frame		
			No CFSnf	Prismatic Film	No CFSsf	Prismatic Film		
М 7- М	ean -182 ean 9000	<i>TPM↓</i> 15 2 / <i>DIVA↓</i> 15	2.12	1.65	1.80	1.30 ——NF-nCFS_DIVA		
7-	-182	2.						
ıminance (lux)	7000 6000 5000 4000					NF-3M_DIVA NF-3M_TPM SF-nCFS_DIVA		
III	3000 2000					SF-nCFS_TPM		
	0001	157 158 159 160 161 161	163 164 165 166 167 167 169	170 171 172 173 175 175 175	178 179 180 181 182	ין איזיין איז איזיין איזיין		

Visual comfort with side-lit. Urtza Uriarte. 2018 International Radiance Workshop. 3-5 September, Loughborough

SIMULATION: DGP / DA

CONCLUSIONS

DA of No Frame WS without CFS and with Prismatic Film CFS

DA of Large Frame WS without CFS and with Prismatic Film CFS

DA of Small Frame WS without CFS and with Prismatic Film CFS

INTRODUCTION

Visual comfort with side-lit. Urtza Uriarte. 2018 International Radiance Workshop. 3-5 September, Loughborough

D D

83

, Loughborough

Mean and standard deviation

1800

1600

1400

200

0

NF

NF PF

LF

Illuminance (lux)

SD157-182/M157-182

1200 1000 800 600 400

SF

LF PF

SF PF

• Although the calculation get more complicate and for same cases will be not necessary, different workplanes contribution as a third plane, **out or side plane**, could **smooth light perception** increasing and decreasing Work Plane perception, **keeping better attention**.

• Each activity or work plane, relation plane and out plane should have different visual comfort conditions and possible glare condition scaling. According to the required time and the accuracy of attention the comfort parameter could be different.

 \cdot The Three-Phase Method results of DA are a little higher than DIVA's DA results.

• Side-lit by small window combined by Prismatic Film CFS tends to provide less probability of daylight glare (less glare source surface) and it tends to provide slightly less light amount but it is enough. It can provide indoor side-lit, with an intimate and comfortable atmosphere; less is more.

• Level and perception are different requirements and could work separately. Combining different types of light and planes as; out plane, redirected light, indirect light and direct light could provide more heterogeneous and dynamic atmospheres.

FUTURE WORKS

Colour

Window combined by CFS façade has a probability to provide a gloomy atmosphere (Kruithof). Adding some warm colour to the atmosphere could create more pleasant atmosphere.

Paredes en Gris	•	•	0	0	0	0	0	0	0	•	0	
	•			۰	۰	۰	۰	۰	۰	۰	۰	
	•				۰		°E	se	ns	or2	57:	264ux
	•				۰		•	•	•	Ŧ	•	
	•		۰		۰		۰	۰				
	۰		۰		D		۰	۰		۰		
	۰		۰		۰	۰	۰	۰	۰	۰		
	•											
	۰	۰	•		D		۰	٥				
	۰	۰	0	۰	D		۰	٥		۰		
	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰		
	۰	۰	۰	۰	٥	۰	۰	٥	٥	۰		
	۰	۰	۰	۰	۰		۰	۰		۰		
	•	۰	۰	۰	۰	۰	۰	۰	۰	•	•	
	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	
	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	
	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	
	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	
	•	۰	۰	۰	۰	۰	۰	•	۰	۰	•	
	•	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	
	•	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	
	۰	۰	۰	۰	۰	۰	۰	۰	۰	۰	•	
	۰	۰	۰	•	0	•	0	•	۰	۰	•	
Promedio: 1148lux	•	۰	۰	•	•	•	•	-1	B	۰	۰	
Max: 3333lux	۰	۰	۰							•	•	
Min: 1lux	۰	•	•	•	1	0	•	•	J		0	

Visual comfort with side-lit. Urtza Uriarte. 2018 International Radiance Workshop. 3-5 September, Loughborough

FUTURE WORKS

Visual comfort with side-lit. Urtza Uriarte. 2018 International Radiance Workshop. 3-5 September, Loughborough

THANK YOU

urtza.uriarte@gmail.com +34 615 73 26 93

